Impact of glucose meter error on efficacy of glycemic control after cardiovascular surgery

Brad S. Karon, M.D., Ph.D.
Associate Professor of Laboratory Medicine and Pathology
Department of Laboratory Medicine and Pathology
Mayo Clinic
Rochester, MN
Disclosures

- Travel supported by Nova Biomedical
Outline

• **Introduction**
 o Glucose meter use in the hospital
 o Glycemic control and hypoglycemia
 o Glucose meter accuracy guidelines

• **Glucose meter error and glycemic control efficacy**
Glucose meters in the hospital

- Multiple uses for glucose meters in hospital
 - Dose subcutaneous insulin for diabetic mildly ill patients
 - Same accuracy requirements as home use
 - Screen for neonatal hypoglycemia
 - Screen for hypoglycemia or hyperglycemia in hospitalized patients
 - Manage intravenous insulin for critically ill patients on glycemic control
 - Hourly glucose measurement, hourly IV insulin adjustment
 - Narrower insulin dosing ranges, more opportunity for dosing errors
Glucose meters in the hospital

• Number of factors influence relationship of glucose meter to true (usually lab plasma) glucose
 o Whole blood vs. plasma (conversion factor)
 − Influenced by hematocrit, plasma water, red cell water
 − Assumptions based upon healthy population
 − Safe assumption in home, not so much in hospital
 o Sample type (capillary vs. venous catheter vs. arterial catheter)
 − Physiologic and technologic limitations
 o Interferences (medications, pO2, others)
Glucose meters in hospital

Error and outliers with WB glucose

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock, hypotension, dehydration, edema</td>
<td>Capillary</td>
</tr>
<tr>
<td>Hematocrit effect</td>
<td>All</td>
</tr>
<tr>
<td>Failure to let alcohol dry</td>
<td>Capillary</td>
</tr>
<tr>
<td>Underdosing strips</td>
<td>Capillary, All</td>
</tr>
<tr>
<td>PW or RW effect</td>
<td>All, CVC > art line?</td>
</tr>
<tr>
<td>Medication interference</td>
<td>All</td>
</tr>
<tr>
<td>pH, O2 or CO2 tension</td>
<td>All? CVC?</td>
</tr>
<tr>
<td>Use of expired or incorrectly stored strips</td>
<td>All</td>
</tr>
<tr>
<td>Temperature extremes</td>
<td>All</td>
</tr>
<tr>
<td>Incorrect calibration info</td>
<td>All</td>
</tr>
<tr>
<td>Improper/incorrect disinfection</td>
<td>All</td>
</tr>
<tr>
<td>Operator error/untrained operators</td>
<td>All</td>
</tr>
</tbody>
</table>
Glucose meters in the hospital

• With all these limitations, what is motivating the desire to measure glucose and adjust insulin doses at the bedside?
 o Recognition of harm of hyperglycemia in the ICU, especially diabetic patients after cardiovascular surgery
 o Glycemic control with intravenous insulin as major trend in critical care
 o Turn-around time limitations of lab glucose, harm of delayed insulin dose adjustment when given intravenously
 – Speed vs. accuracy (limitations)
Glycemic control vs. hypoglycemia

- **Leuven 1, Van den Berghe 2001**
 - First large trial tight glycemic control (TGC) surgical ICU
 - Primary findings:
 - Among patients in ICU > 5 days, mortality reduced ~ 30% in intensive insulin group
 - Increased rate of hypoglycemia in intensive group (6x, 5% of intensive group)
 - ABG analyzers used to measure blood glucose

- **Leuven II, Van den Berghe 2006**
 - Repeat of study in medical ICU
 - TGC only effective in patients with > 3 d ICU stay
 - Hypoglycemia significant limitation, increased mortality for patients < 3 d in ICU
 - 6-fold increased rate of hypoglycemia (18.7%)
 - Glucose meters instead of ABG
Glycemic control vs. hypoglycemia

- Single episode of severe hypoglycemia (< 40 mg/dL) associated with increased mortality
 - OR 2.3 X for death (Krinsley, 2007)

- In same population patients glycemic control reduced mortality

- Sensitivity analysis performed to determine how much SH would offset TGC
 - 4X increase in SH (from 2.3% to 9.2%) predicted to completely offset survival benefit of TGC
Glycemic control vs. hypoglycemia

• TGC protocols associated with 5-14 X increase incidence of hypoglycemia

• Absolute rates of hypoglycemia vary widely between TGC studies depending on target and protocol
 o 0.34% (Stamford Hospital)
 o 18.7 % (Leuven II)

• Does the glucose meter error have anything to do with glycemic control outcomes or rate hypoglycemia?

• What is required accuracy of glucose meters used to manage glycemic control?
Glucose meter accuracy guidelines

• ISO 15197 (2013) and NACB (2011)
 o 95% of glucose meter results within...
 - ±15 mg/dL (0.83 mM) at glucose < 100 mg/dL
 - ±15% at glucose ≥ 100 mg/dL (5.56 mM)
 - 99% within zones A&B on consensus error grid (ISO)

• CLSI POCT 12-A3
 o 95% glucose meter results within...
 - ±12 mg/dL (0.67 mM) at glucose < 100 mg/dL
 - ±12.5% at glucose ≥ 100 mg/dL (5.56 mM)
 - 98% within ±20% (≥100 mg/dL) or 15 mg/dL (<100 mg/dL)

• American Diabetes Association
 o ±10% of true value for all devices for all purposes (home use, hospital use), ±5% of true value is ideal
Glucose meter accuracy in the hospital

• Differing total error recommendations—10-15%
• Can “newer” glucose meter technologies achieve 10-15% total error when fresh whole blood samples are tested on critically ill patients after cardiovascular surgery?
 – If so, because bias or imprecision is reduced?
 – Where are we at today, how did we get there (reducing bias or reducing imprecision)
• Does reducing glucose meter error improve efficacy of glycemic control in the cardiovascular ICU?
 – Does it matter?
Measuring glucose meter accuracy in the ICU

- Nova StatStrip replaced Roche AccuChek Inform 10/2012
- Assess impact on accuracy and precision of glucose measurements in ICU
 - Accuracy when routine clinical samples tested at bedside
 - Retrospective study with Inform and StatStrip
 - Precision with fresh arterial whole blood from critically ill patients
Measuring glucose meter accuracy in the ICU

- Precision (prospective study)

- Roche AccuChek Inform (20 ICU patients with 5x measurement at the bedside)
 - CV of 2.0% at an average glucose value of 142 mg/dL (7.89 mM)

- Nova StatStrip (20 ICU patients with 5x measurement at the bedside)
 - CV of 2.7% at an average glucose value of 140 mg/dL (7.78 mM)

- Both meters precise when fresh whole blood tested at bedside
Measuring glucose meter accuracy in the ICU

• **Accuracy (retrospective study)**

 o Over 3 month period, 1602 Inform whole blood glucose measurements performed within 5 minutes of drawing serum glucose (Roche Hexokinase)

 o Over separate 3 month period, 1093 StatStrip whole blood glucose performed within 5 minutes of serum glucose
Measuring glucose meter accuracy in the ICU

- Median bias 11 mg/dL (0.61 mM)
- Median (IQR) % bias 9 (4 to 14) %
Measuring glucose meter accuracy in the ICU

- Median bias 1 mg/dL (0.06 mM)
- Median (IQR) % bias 1 (-3 to 5) %
Results—glucose meter accuracy in ICU

<table>
<thead>
<tr>
<th></th>
<th>Inform (n=1602)</th>
<th>StatStrip (n=1093)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent within 10% lab</td>
<td>55%</td>
<td>89%</td>
</tr>
<tr>
<td>Percent with 20% lab</td>
<td>92%</td>
<td>98%</td>
</tr>
<tr>
<td>% within 15%/15 mg/dL (NACB, new ISO 15197) serum</td>
<td>80%</td>
<td>97%</td>
</tr>
<tr>
<td>% within 12.5%/12.5 mg/dL (CLSI POCT12-A3) serum</td>
<td>69%</td>
<td>95%</td>
</tr>
</tbody>
</table>

- By reducing bias, reduced TEa from ~20% ← 12.5%
Impact of insulin dosing errors on glycemic control in ICU

- **Impact on patient outcome**
 - ICU/hospital mortality
 - Hospital morbidity (infections, transfusions, renal failure)
 - Requires randomized trial > 1000 patients

- **Impact on glycemic control efficacy**
 - Glycemic variability
 - Time within target range
 - Incidence hypo and hyperglycemia
 - Requires 50-150 patients per study arm
Impact of insulin dosing errors on glycemic control in ICU

- Why measure glycemic control efficacy?
 - Hypoglycemia important outcome
 - Hyperglycemia is what is being avoided
 - Glycemic variability
 - More variability = more hypo and hyperglycemia
 - Increased variability (extreme highs and lows) may alone decrease survival in ICU
 - ↑ time in target range, ↓ hypo and hyperglycemia, ↓ variability = better protocol
 - Can reducing meter error alone lead to a better protocol?
Study design

- Given improved accuracy of meter in ICU
 - ~20% → 12.5% TEa

- Can we measure impact on glycemic control efficacy?

- Retrospective review patients post cardiovascular surgery placed on glycemic control in CVS ICU
 - 12-24 consecutive (30-120 min) glucose values on insulin drip
 - Period 1 (70 patients monitored with AccuChek Inform)
 - Period 2 (70 patients monitored with StatStrip)
 - No change infusion protocol, testing personnel, etc
Study design

- **Measures glycemic variability**
 - Standard deviation (SD)
 - Continuous overall net glycemic action (CONGA)
 - Percent values in target range (110-150 mg/dL)
 - Incidences of hypoglycemia and hyperglycemia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD age (range)</td>
<td>68 ± 12 (28-92)</td>
<td>65 ± 12 (29-86)</td>
<td>0.22</td>
</tr>
<tr>
<td>Gender</td>
<td>39 M/ 31 F</td>
<td>42 M/ 28 F</td>
<td>0.61</td>
</tr>
<tr>
<td>Diabetes</td>
<td>35 ND/ 35 T2DM</td>
<td>35 ND/ 35 T2DM</td>
<td></td>
</tr>
<tr>
<td>Median (range) number glucose values</td>
<td>22 (12-24)</td>
<td>21 (12-24)</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Results—Glycemic variability and time within target range

<table>
<thead>
<tr>
<th></th>
<th>Period 1 (n=70)</th>
<th>Period 2 (n=70)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) glucose (mg/dL)</td>
<td>141 (126, 156) mg/dL</td>
<td>136 (125, 148) mg/dL</td>
<td>0.005</td>
</tr>
<tr>
<td>Median (IQR) standard deviation (SD)</td>
<td>21.6 (16.9, 26.3) mg/dL</td>
<td>13.7 (12.4, 19.1) mg/dL</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Median (IQR) CONGA</td>
<td>19.4 (16.0, 24.2) mg/dL</td>
<td>13.5 (10.9, 17.3) mg/dL</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Median (IQR) percent values in target range (%)</td>
<td>66.7 (50, 74.2) %</td>
<td>74.5 (58.5, 86.7) %</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Glycemic variability decreased and time in target range increased with improved meter accuracy
Results—Glycemic variability and time within target range

Non-diabetic patients only

<table>
<thead>
<tr>
<th></th>
<th>Period 1 (n=35)</th>
<th>Period 2 (n=35)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) standard deviation (SD)</td>
<td>18.7 (16.3, 25.6) mg/dL</td>
<td>15.4 (12.4, 19.9) mg/dL</td>
<td>0.004</td>
</tr>
<tr>
<td>Median (IQR) CONGA</td>
<td>18.3 (13.3, 21.6) mg/dL</td>
<td>13.5 (10.2, 19.0) mg/dL</td>
<td>0.04</td>
</tr>
<tr>
<td>Median (IQR) time in target range (%)</td>
<td>68.8 (61.9, 79.2)</td>
<td>73.7 (62.5, 87.5)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

- Glycemic variability (SD and CONGA) decreased ~ 20%
- No significant change in time in target range
Results—Glycemic variability and time within target range

- **Type 2 diabetes only**

<table>
<thead>
<tr>
<th></th>
<th>Period 1 (n=35)</th>
<th>Period 2 (n=35)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) standard deviation (SD)</td>
<td>22.4 (17.7, 28.0) mg/dL</td>
<td>13.6 (12.3, 18.3) mg/dL</td>
<td><0.0001</td>
</tr>
<tr>
<td>Median (IQR) CONGA</td>
<td>21.4 (18.3, 27.5) mg/dL</td>
<td>13.5 (11.7, 15.2) mg/dL</td>
<td><0.0001</td>
</tr>
<tr>
<td>Median (IQR) time in target range (%)</td>
<td>61.9 (46.7, 72.7) %</td>
<td>78.3 (54.2, 85.7) %</td>
<td>0.006</td>
</tr>
</tbody>
</table>

- ~40% decrease in glycemic variability (SD and CONGA)
- ~25% increase in time in target range

Bigger impact on patients with Type 2 diabetes
Results—Incidence of hypo and hyperglycemia

- **Hypoglycemia** (< 70 mg/dL, 3.89 mM)
 - 1 patient, 1 value Period 1
 - 0 patients, 0 values Period 2

- **Hyperglycemia** (> 200 mg/dL, 11.11 mM)
 - 26 patients (7 non-diabetic and 19 T2DM), Period 1
 - 6 patients (1 non-diabetic and 5 T2DM), Period 2
Conclusions

• Glucose meter use in the hospital
 o Often done on non-diabetic patients
 o Tighter glucose ranges, more opportunities to “translate” glucose measure error into insulin dosing error
 o Sources of error (hematocrit, medication interferences, sample type differences) more pronounced effects

• Newer glucose meter technologies reduce error of glucose measurement when used at the bedside on critically ill patients

• Evidence emerging that improving glucose meter performance (reducing error) will improve efficacy of glycemic control
Questions?