Blood Gases Made Easy

Trevor Allison
IFCC TF-POCT
Director R&D, Siemens HC POC, UK

POCT Meeting – Cancun, Mexico

November 16th & 17th 2015
Life is all about balance...
37 ± 0.5°C
Similarly, the pH of body fluids is optimized, in particular blood pH...
Acid – Base Balance

0 Acid 7 Alkali (Base) 14

\[\text{pH} = \log_{10} \left(\frac{1}{[H^+]} \right) \]

Acidosis 7.40 Alkalosis
Acid – Base Balance

7.35 – 7.45

Acidosis Normal Alkalosis

Arterial blood pH

Patient A 7.28 Acidosis
Patient B 7.51 Alkalosis
Patient C 7.34 Acidosis
Patient D 7.46 Alkalosis
Acid – Base Balance

Henderson – Hasselbach equation

$$pH = 6.1 + \log_{10} \left(\frac{[\text{HCO}_3^-]}{0.03 \times p\text{CO}_2} \right)$$
Acid – Base Balance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35 – 7.45</td>
</tr>
<tr>
<td>pCO₂</td>
<td>35 – 45 mmHg</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>22 – 26 mmol/L</td>
</tr>
</tbody>
</table>

\[
pH = 6.1 + \log_{10}\left(\frac{[\text{HCO}_3^-]}{0.03 \times \text{pCO}_2}\right) \]

\[
pH = 7.40
\]
Acid – Base Balance

7.35 – 7.45

Acidosis

High pCO_2
Low HCO_3^-

Alkalosis

Low pCO_2
High HCO_3^-
Acid – Base Balance

\[pH \propto \left(\frac{\text{HCO}_3^-}{p\text{CO}_2} \right) \]

Metabolic

Respiratory
Acid – Base Balance

Le Chatelier’s principle

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^-
\]
Acid – Base Balance

7.35 – 7.45

Acidosis

- High pCO₂
- Low HCO₃⁻

- Respiratory Acidosis
- Metabolic Acidosis

Alkalosis

- Low pCO₂
- High HCO₃⁻

- Respiratory Alkalosis
- Metabolic Alkalosis
Acid – Base Balance

Normal range

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>pCO₂</th>
<th>HCO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>7.35</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>High</td>
<td>7.45</td>
<td>45 mmHg</td>
<td>26 mmol/L</td>
</tr>
</tbody>
</table>

Acid-Base Imbalance

<table>
<thead>
<tr>
<th>Patient</th>
<th>pH</th>
<th>pCO₂</th>
<th>HCO₃⁻</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.28</td>
<td>51</td>
<td>23</td>
<td>Respiratory Acidosis</td>
</tr>
<tr>
<td>B</td>
<td>7.51</td>
<td>32</td>
<td>25</td>
<td>Respiratory Alkalosis</td>
</tr>
<tr>
<td>C</td>
<td>7.30</td>
<td>40</td>
<td>19</td>
<td>Metabolic Acidosis</td>
</tr>
<tr>
<td>D</td>
<td>7.55</td>
<td>35</td>
<td>30</td>
<td>Metabolic Alkalosis</td>
</tr>
</tbody>
</table>

Trevor Allison IFCC POCT Meeting Cancun Nov 2015
Acid – Base Balance Compensation

<table>
<thead>
<tr>
<th>pH</th>
<th>pCO₂</th>
<th>HCO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.28</td>
<td>51</td>
<td>23</td>
</tr>
</tbody>
</table>

3 responses to the change in equilibrium

1. Buffers in the blood
2. Respiratory
3. Metabolic

Response time

Quickly
Fairly quickly
Slowly
Acid – Base Balance Compensation

3 responses to the change in equilibrium

1. Buffers in the blood

![Graph showing pH change with acid and base added]
Acid – Base Balance Compensation

3 responses to the change in equilibrium

1. Buffers in the blood
2. Respiratory

\[pH \propto \left(\frac{\text{HCO}_3^-}{p\text{CO}_2} \right) \]
Acid – Base Balance Compensation

3 responses to the change in equilibrium

1. Buffers in the blood
2. Respiratory
3. Metabolic

\[pH \propto \left(\frac{\text{HCO}_3^-}{p\text{CO}_2} \right) \]
Acid – Base Balance Compensation

7.35 – 7.45

Acidosis → Increase \(\text{HCO}_3^- \) → Low \(p\text{CO}_2 \) → Alkalosis

High \(p\text{CO}_2 \) → Decrease \(\text{HCO}_3^- \) → Alkalosis → High \(p\text{CO}_2 \)
Acid – Base Balance Compensation

7.35 – 7.45

Acidosis → Decrease pCO₂ → Low HCO₃⁻

Alkalosis → Increase pCO₂ → High HCO₃⁻
<table>
<thead>
<tr>
<th></th>
<th>7.35</th>
<th>7.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>22</td>
<td>26</td>
</tr>
</tbody>
</table>
Arterial blood pH

<table>
<thead>
<tr>
<th></th>
<th>ACID</th>
<th>NORMAL</th>
<th>BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>45</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>22</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Patient A

- pH: 7.28
- pCO₂: 51
- HCO₃⁻: 23

Uncompensated Respiratory Acidosis
Arterial blood pH

<table>
<thead>
<tr>
<th></th>
<th>Acid</th>
<th>Normal</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>45</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>22</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Patient B

- pH: 7.70
- pCO₂: 24
- HCO₃⁻: 21

Partially compensated Respiratory Alkalosis
Arterial blood pH

<table>
<thead>
<tr>
<th></th>
<th>Acid</th>
<th>Normal</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>45</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>22</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Patient C
- pH: 7.45
- pCO₂: 48
- HCO₃⁻: 28

Fully compensated Metabolic Alkalosis
Arterial blood pO$_2$

Normal range for pO2 in arterial blood is 80 – 100 mmHg
(assuming room air at sea level of circa 160 mmHg)

Mexico City
Altitude 2240 metres, BP 585mmHg
Room air pO$_2$ circa 123 mmHg
Normal range 62 to 77 mmHg

60 - 79 mmHg mild hypoxia
40 - 59 mmHg moderate hypoxia
< 40 mmHg severe hypoxia
Arterial blood pO$_2$

For a patient on oxygen therapy the FiO$_2$ has to considered…

<table>
<thead>
<tr>
<th>FiO$_2$</th>
<th>Expected pO2 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>150</td>
</tr>
<tr>
<td>40%</td>
<td>200</td>
</tr>
<tr>
<td>50%</td>
<td>250</td>
</tr>
</tbody>
</table>

Rule of 5X
Blood Gas Interpretation

This is a basic guide to ABG result interpretation
Real life situations are often more complex

<table>
<thead>
<tr>
<th>Acid</th>
<th>Normal</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional calculated parameters such as Anion Gap, tHb & SaO₂ can help diagnose root cause
Thank you for your attention