Leukaemias and lymphomas are clonal disorders of the haematopoietic cell characterized by somatically acquired genetic alterations. The discovery that molecular abnormalities are involved in their pathogenesis has greatly improved our understanding of these diseases. In leukaemias, more than 300 chromosomal rearrangements have been detected and more than 100 of these have been cloned and characterized until now. Molecular abnormalities in Haematologic malignancies are diverse but can be grouped in two categories:

- Abnormal rearrangements caused by chromosome translocations, inversions and duplications which usually result in oncogene activation; the result of these rearrangements can be either fusion proteins or deregulated expression of genes;
- Mutations and deletions of tumour suppressor genes (e.g. p53, atm).

Additionally, normal rearrangements in lymphocyte antigen receptor genes can serve in detection of clonality that highly correlates with (but is not equal to) malignancy. Perhaps the best studied is t(9;22) translocation, giving rise to the bcr/abl fusion protein. Fusion of BCR to ABL results in constitutive activation of ABL that is necessary and sufficient for induction of chronic myelogenous leukaemia (CML). At least 95% of CML cases carry t(9;22) which is not pathognomonic for CML, as it is also present in 15% of adult and 5% of pediatric ALL and in 2% of AML. There is a reciprocal translocation in which a large segment of the Abelson proto-oncogene (abl) at 9q34 is juxtaposed within the breakpoint cluster region gene (bcr) at 22q11, resulting in bcr-abl fusion gene (Figure 1).

Transcription from this gene yields chimeric mRNA molecules. The final product is a protein with elevated tyrosine kinase activity that seems to exert its effects by interfering with cellular signal transduction pathways normally involved in the control of cell death and proliferation and cell-cell adhesion. The BCR-ABL fusion protein can vary from 190 kDa to 230 kDa, depending on the site of the breakpoint in the BCR gene. In almost all CML the breakpoints in the BCR gene are found within the M-bcr region with hybrid BCR-ABL transcript of 8.5 kb containing either BCR exon b2 or b3 and ABL exon 2. This mRNA encodes the 210 kDa BCR-ABL protein (p210). The majority of CML patients have transcripts with b3-a2 or b3-a2 junctions. In 5% of cases, both b3-a2 and b2-a2 transcripts can be formed as a result of alternative splicing. In very rare cases of Ph+ CML, the breakpoint in the BCR gene involves the ALL-associated m-bcr region, which results in production of smaller p190 fusion protein. A very small proportion of Ph+ CML patients display a larger BCR-ABL fusion transcript that is caused by breakpoints in the micro breakpoint cluster region (7-bcr) and results in a larger fusion protein p230.

Known genetic aberrations have been included in World Health Organization (WHO) classification of acute leukaemias and Revised European-American Lymphoma (REAL) classification of lymphomas. Genetic characterization became an essential part of the diagnostic work-up in order to define the risk of relapse and assign patients to specific treatment options.

The WHO classification recognizes in acute myeloid leukaemia (AML) four subgroups with distinct prognostic outcomes (Table 1):

- AML with recurrent genetic abnormalities including t(8;21), t(15;17), inv(16) or t(16;16) and 11q23 abnormalities;
- AML with multilineage dysplasia,
therapy related AML and MDS and AML classified as FAB subtype M0-M7

Table 1. The most common chromosomal translocations in acute myeloid leukaemia

<table>
<thead>
<tr>
<th>FAB</th>
<th>Abnormality</th>
<th>Fusion gene</th>
<th>Frequency (No)</th>
<th>Detection method</th>
<th>Prognostic outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>t(3;14)(q25;q22)</td>
<td>AML-ETO</td>
<td>1</td>
<td>FISH, RT-PCR</td>
<td>Favourable</td>
</tr>
<tr>
<td>ME</td>
<td>t(9;11)(p22;q23)</td>
<td>MLL-ENL</td>
<td>1</td>
<td>RT-PCR</td>
<td>Favourable</td>
</tr>
<tr>
<td>ME</td>
<td>t(4;11)(q21;q23)</td>
<td>MLL-MLLT1</td>
<td>1</td>
<td>RT-PCR</td>
<td>Favourable</td>
</tr>
<tr>
<td>ME</td>
<td>t(8;21)(q22;q22)</td>
<td>RASB-RUNX1</td>
<td>1</td>
<td>RT-PCR</td>
<td>Favourable</td>
</tr>
</tbody>
</table>

Table 2. The most common chromosomal translocations in acute lymphoblastic leukaemia

<table>
<thead>
<tr>
<th>Disease</th>
<th>Abnormality</th>
<th>Fusion gene</th>
<th>Frequency (No)</th>
<th>Detection method</th>
<th>Prognostic outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre B</td>
<td>t(4,14)(p23,q32)</td>
<td>BCR-ABL</td>
<td>55</td>
<td>FISH, RT-PCR</td>
<td>Un favourable</td>
</tr>
<tr>
<td>pre T</td>
<td>t(1,19)(p13,q13)</td>
<td>TEL-AML1</td>
<td>10(10)</td>
<td>FISH, RT-PCR</td>
<td>Un favourable</td>
</tr>
<tr>
<td>Burkitt</td>
<td>t(8,22)(q24,q11)</td>
<td>MALT1</td>
<td>1</td>
<td>FISH, RT-PCR</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

The revised WHO classification of ALL relies upon initial immunophenotypic characterization that defines pre B, pre T, and Burkitt cell leukaemia. Each entity is then characterized with distinct cytogenetic subgroups (Table 2). The result of translocations in pre B cell forms is the generation of fusion genes (proteins). In pre T-cell ALL most translocations result in deregulated expression of pre B-cell receptor gene.

Table 3. The most common chromosomal translocations in acute lymphoblastic leukaemia

<table>
<thead>
<tr>
<th>Disease</th>
<th>Abnormality</th>
<th>Fusion gene</th>
<th>Frequency</th>
<th>Detection method</th>
<th>Prognostic outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre B</td>
<td>t(4,14)(p23,q32)</td>
<td>BCR-ABL</td>
<td>55</td>
<td>FISH, RT-PCR</td>
<td>Un favourable</td>
</tr>
<tr>
<td>pre T</td>
<td>t(1,19)(p13,q13)</td>
<td>TEL-AML1</td>
<td>10(10)</td>
<td>FISH, RT-PCR</td>
<td>Un favourable</td>
</tr>
<tr>
<td>Burkitt</td>
<td>t(8,22)(q24,q11)</td>
<td>MALT1</td>
<td>1</td>
<td>FISH, RT-PCR</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

8.1 Methodological approaches for detecting leukaemia/lymphoma-associated abnormal rearrangements

Haematologic malignancies are analyzed and classified on the basis of properties including morphology, cell surface markers, immunohistochemistry, and cytogenetic abnormalities. Additionally, the knowledge about haematopoietic differentiation and genetic abnormalities in haematologic malignancies has aided in establishment and interpretation of gene expression data.

Structural changes affecting chromosomes can be analyzed by using a variety of techniques including comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). Finer resolution of these alterations can be obtained by using the polymerase chain reaction (PCR), DNA sequencing, and genomic and cDNA array analysis. Table 4 provides a listing of some currently used techniques in molecular diagnostics today.

Table 4. Summary of techniques for molecular analysis of hematopoietic disorders

<table>
<thead>
<tr>
<th>Tests for Gene-Wide Screening of Chromosomal Anomalies</th>
<th>Tests for Targeting Specific Chromosomal Abnormalities</th>
<th>Tests for Gene Expression Profiling</th>
<th>Tests for Minimal Residual Disease Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative genomic hybridization</td>
<td>PCR (polymerses chain reaction analysis of DNA)</td>
<td>Global microarrays</td>
<td>Quantitative real-time PCR</td>
</tr>
<tr>
<td>FISH</td>
<td>RT-PCR (reverse transcriptase PCR analysis of RNA)</td>
<td>Focused microarrays</td>
<td></td>
</tr>
<tr>
<td>Fluorescence in situ hybridization (FISH)</td>
<td>Real-time PCR</td>
<td>Microarray of amplified RNA from microdissection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genotyping for angle nucleotide polymorphisms (PCR-SSP)</td>
<td>Molecular tests for Minimal Residual Disease Detection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorescence in situ hybridization (FISH)</td>
<td>Nested PCR</td>
<td></td>
</tr>
</tbody>
</table>

Conventional karyotyping still has a paramount role in diagnosis and classification of human leukaemias and lymphomas. Besides chromosome translocations, other clinically important aberrations are detectable using this technique, allowing implementation of patient stratification in prognostic groups - particularly in AML (Table 1). The study of the full karyotype on metaphases provides important information on distinct lesions that characterize particular leukaemia/lymphoma while additional numerical and structural aberrations carry biological and clinical relevance.

FISH is a very useful technique for detection of targeted chromosomal abnormalities around the time of initial diagnosis or at relapse, when there is a relatively high level of abnormal cells. It can be performed on blood, bone marrow, tissue touch preparations, body fluids, and paraffin-embedded fixed tissue. FISH can be done with metaphase or interphase preparations so it overcomes the need for metaphases that is the biggest problem with lymphoma and chronic leukaemia samples. FISH assays are particularly useful in detection of chromosome translocations that are not amenable to PCR due to widely distributed breakpoints. FISH is not useful for detection of low-level minimal residual disease (MRD) as the sensitivity is only 10-2.

Reverse transcription (RT)-PCR is a well-established technique for identifying very small amounts of specific mRNA transcripts. The
application of this technique has permitted researchers to detect
cancerous cells at levels well below the threshold of the light
microscope.

Table 5. Sensitivity of various detection methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity (1 cell in n cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>1/25</td>
</tr>
<tr>
<td>Interphase FISH</td>
<td>1/500</td>
</tr>
<tr>
<td>Immunophenotyping</td>
<td>1/10^6 to 10^8</td>
</tr>
<tr>
<td>Nested PCR</td>
<td>1/10^6 to 10^7</td>
</tr>
<tr>
<td>Real time PCR</td>
<td>1/10^5 to 10^6</td>
</tr>
<tr>
<td>Microsatellite PCR</td>
<td>1/10^4 to 10^5</td>
</tr>
</tbody>
</table>

Additionally, the accurate quantification of target sequences is
possible using automated systems. RT-PCR is widely used in routine
genetic diagnosis and in assessment of the response to treatment.
Quantitative real-time PCR measures the number of target DNA
copies in automated manner using a fluorescence analyzer and is
particularly useful for MRD studies.

8.2 Minimal residual disease in
Haematological malignancies

Although many patients with Haematologic malignancies achieve a
complete clinical remission and remission by morphologic and
immunologic criteria, a relatively high proportion of them will
ultimately relapse. A persistent malignant cellular population
present at low level, below the limit of detection of standard
techniques, is the cause of this relapse and is called minimal residual
disease (MRD). Several studies have shown that detection and
quantification of residual tumour cells significantly correlate with
clinical outcome. The quantitative measurement of the decrease in
the leukemic cell load during the initial phases of treatment has a
high prognostic value.

Methods to detect MRD include technologies designed to detect
residual malignant cells beyond the sensitivity of conventional
approaches (Table 5). Ideally, techniques used for MRD detection
should have a sensitivity level in the 10^5 - 10^6 range. Only a few
commonly used techniques are sensitive enough for detection of
MRD in leukaemias and lymphomas. Currently, PCR based methods
represent the most widely accepted technologies for MRD detection.
Over the past 15 years, quantitative PCR assays were developed.
Competitive RT-PCR employed to monitor patients after
transplantation or treatment with specific agents are time-
consuming and cumbersome. Quantification of residual disease has
been simplified with the introduction of real-time PCR
methodologies and machines. Nested PCR and quantitative real-time
PCR can be used for disease-associated translocations. If there is not
a good translocation target for PCR analysis, patient-specific gene
rearrangements may be targeted.

8.3 DNA microarrays

In the past several years, experiments using DNA microarrays have
contributed to an increasingly refined molecular classification of
Haematologic malignancies. Quantitative information about the
expression of thousand genes can be generated with rapidity and
reproducibility.

In DNA microarray experiments, DNA probes (cDNA fragments,
generated by PCR of cDNA clone inserts) are arrayed on a platform
glass slide, nylon membrane, silicon wafer). After target cDNA or
cDNA generated from sample RNA and labeled with fluorescent dye
or biotin is hybridized to the microarray, a scanner measures
fluorescence at the site of each unique probe.

Gene microarrays have been used to profile acute leukaemias and
have identified expression signatures characteristic of AML and ALL
The same approach has been used to profile subsets of both these
leukaemias. It was demonstrated that expression patterns are
strongly linked to karyotypic status for t(8;21), t(15;17), inv(16),
11q23 and normal controls. Profiles for ALL with rearrangement
of the MLL gene clearly distinguished this category from ALLs and
AMLs without MLL. In ALL, expression profiles subdivided ALL into
T-ALL, hyperploid, BCR-ABL, E2A-PBX1, TEL-AML, MLL and one
previously unrecognized subset of ALL (Figure 2).

Diffuse large B-cell lymphoma (DLBCL) is one disease in which
attempts to define subgroups on the basis of morphology have
largely failed. Using DNA microarrays two molecularly distinct
forms of DLBCL were identified which had gene expression patterns
indicative of different stages of B-cell differentiation: one type
expressed genes characteristic of germinal centre B cells (GC-like
DLBCL) while the second type expressed genes normally induced
during in vitro activation of peripheral blood B cells (PB-like
DLBCL). It was found that GC-like DLBCLs have a more favorable
outcome compared with the PB-like DLBCLs, suggesting that
putative cell of origin might be predictive of response to treatment
in this disease.

Gene microarray helps to progress the study of Haematological
malignancy in the area of classification and outcome prediction, hich
then enables tailoring and earlier application of treatment for the
benefit of patient.

Figure 2. Expression profiling-based classification of AML and ALL subtypes.
Reprinted from Yeoh et al. with permission.
References


