Advancing excellence in laboratory medicine for better healthcare worldwide
All news

IFCC Information Guide on COVID-19 - Monday 14 September updates

Published: Sunday, August 23, 2020

 

 

IFCC Information Guide on COVID-19

Click aquí para descargar el Resumen traducido de la Guía de Información de la IFCC sobre COVID-19
Kliknutím zde stáhnete českou verzi IFCC informačního  souhrnu o COVID 19 z 16 . dubna 2020

 

Coronavirus disease 2019, abbreviated to COVID-19, is an emerging global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the number of individuals infected with COVID-19 continues to rise globally and healthcare systems become increasingly stressed, it is clear that the clinical laboratory will play an essential role in this crisis, contributing to patient screening, diagnosis, monitoring/treatment, as well as epidemiologic recovery/surveillance. This guide aims to organize relevant available information on laboratory screening, testing protocols, diagnosis, and other general information on COVID-19 for laboratory professionals, including links to helpful resources and interim guidelines. It will be continually updated as new guidelines and literature become available.

 

 


 

Table of Contents:

_____________________________________________________________________

 

1. General Information:

Please find below links to helpful websites and guidelines that have been put together by laboratory and clinical specialists from all over the world:

Key Resources:

Royal College of Pathologists Australasia: Useful COVID-19 Resources

Royal College of Pathologists UK: COVID-19 Recommendations

Scientific Journal Resources:

Journal of the American Medical Association (JAMA): Coronavirus Disease 2019 (COVID-19)

New England Journal of Medicine (NEJM): Coronavirus (Covid-19)

 

Global Practice Guidelines/Handbooks:

Novel Coronavirus Pneumonia Diagnosis and Treatment Plan (Provisional 7th Edition, Chinese Guidelines)

Handbook of COVID-19 Prevention and Treatment (Zhejiang University School of Medicine)

Handbook for COVID-19 Laboratory  Management (Sociedade Brasileira de Analises Clinicas  - Portuguese and English)

Orientative Guide on Quality Management for Laboratory Diagnosis of COVID-19 (OBBCSSR, Romania)

 

Other Resources:

Association for Quality Management in Laboratory Medicine: COVID-19 resources

The Canadian Public Health Laboratory Network: Resources

FIND Diagnostics: COVID-19 Diagnostics Research Centre

Joint Commission International: COVID-19 Guidance & Resources

Oxford Centre for Evidence-Based Medicine: COVID-19 Evidence Service

The Scientist Magazine: Follow the Coronavirus Outbreak

_____________________________________________________________________

 

2. Patient Screening

According to the World Health Organization (WHO) guide for Global surveillance for COVID-19 caused by human infection with COVID-19 virus, a suspect case is defined as:

  1. A patient with acute respiratory illness (fever and at least one sign/symptom of respiratory disease, e.g., cough, shortness of breath), AND a history of travel to or residence in a location reporting community transmission of COVID-19 disease during the 14 days prior to symptom onset; OR
  2. A patient with any acute respiratory illness AND having been in contact with a confirmed or probable COVID-19 case (see definition of contact) in the last 14 days prior to symptom onset; OR
  1. A patient with severe acute respiratory illness (fever and at least one sign/symptom of respiratory disease, e.g., cough, shortness of breath; AND requiring hospitalization) AND in the absence of an alternative diagnosis that fully explains the clinical presentation.

A probable case is defined as:

  1. A suspect case for whom testing for the COVID-19 virus is inconclusive; OR
  2. A suspect case for whom testing could not be performed for any reason.

A confirmed case is defined as:

A person with laboratory confirmation of COVID-19 infection, irrespective of clinical signs and symptoms.  See laboratory guidance for details.

 _____________________________________________________________________

 

3. Diagnostic Testing: Analytical and Clinical Aspects

Upon confirmation of a suspected case, specimens should be rapidly collected and tested. The Centers for Disease Control and Prevention (CDC) Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons for Coronavirus Disease 2019 (updated April 8th) recommends collecting an upper respiratory specimen for initial diagnostic testing. The following specimens can be collected for swab-based testing: Nasopharyngeal specimen (preferred), Oropharyngeal specimen, Nasal mid-turbinate specimen and Anterior nares specimen. Lower respiratory tract specimen testing is also recommended by the CDC, if the specimens are available.

 

Nucleic Acid Amplification Tests (NAAT)

Real-time reverse transcription polymerase chain reaction (rRT-PCR) is the current gold standard for diagnosing suspected cases of COVID-19. rRT-PCR is a nucleic acid amplification test (NAAT) that detects unique sequences of the virus that causes COVID-19 (SARS-CoV-2) in respiratory tract specimens. The N, E, S, and RdRP are the viral genes currently targeted (WHO,  Laboratory testing for coronavirus disease (COVID-19) in suspected human cases). A validated diagnostic workflow for detecting SARS-CoV-2 has been recently published by Corman and colleagues (PMID: 31992387), as follows: (a) First line screening: E gene, (b) Confirmatory screening: RdRP gene, and (c) Additional confirmatory screening: N gene.

The following table presents criteria for a case to be considered as laboratory-confirmed by validated NAAT assays according to the WHO:

In some cases, a negative result may be returned for a suspected case with a high likelihood of COVID-19 infection. If the negative result was concluded based on only an upper respiratory tract specimen, a lower respiratory tract specimen should be subsequently tested. Additional specimens eligible for testing include blood and stool (WHO, Laboratory testing for coronavirus disease (COVID-19) in suspected human cases).

Antigen Testing

Antigen assays belong to an additional class of pathogen detecting assays. They detect SATS-CoV-2 antigen in virtually the same sample types as molecular test. These types of assays have already used in the past for other respiratory diseases like influenza and are usually POC tests. There are known to have a good specificity, but a limited sensitivity compared to NAAT. Advantages are an almost instant result and lower cost compared to NAAT. They allow an early rule-in of patients. Negative results, however, still require follow-up NAAT testing. One antigen assay recently got an FDA EUA authorization the Quidel Sofia® 2 SARS Antigen FIA. 

Currently Available Diagnostic Assays

Several in-house and commercial assays are currently being developed and optimized. Links to currently available in-house protocols can be accessed here via the World Health Organization. Countries who have no testing capacity or national COVID-19 laboratories with limited experience on COVID-19 testing are encouraged to send the first five positives and the first ten negative COVID-19 samples to WHO reference laboratories providing confirmatory testing for COVID-19. Additionally, the WHO also released a Laboratory Assessment Tool (LAT) which is designed to assess the capacity of existing laboratories which aim to implement COVID-19 testing: Access the tool!

Pre-analytical and Analytical Testing Issues

There are various pre-analytical and analytical issues that can affect diagnostic testing for COVID-19 infection. Some pre-analytical issues include improper collection, handling, transport and usage of swabs, as well as collection of inappropriate or inadequate material, interfering substances, and sample contamination. A common analytical issue is testing outside of the diagnostic window, in addition to active viral recombination and inadequately validated assays (PMID: 31992387).

In order to increase testing capacity and provide more flexible options for SARS-CoV-2 RNA screening, the prospect of patient self-collection of samples has been recently discussed. Indeed, the FDA recently authorized the first home test kit for COVID-19 (April 20 2020). While expanding consumer access to COVID-19 is important, various preanalytical considerations need to be considered, affecting sample quality and impacting result accuracy.  These concerns are summarized in a recent letter from the AACC and supported by a recent publication by Sullivan and colleagues (PMID: 32310815).

Serological Testing:

There has been much debate regarding the current value of serological testing in COVID-19 diagnosis and monitoring. There is general concern regarding their use in the acute phase of infection as they detect infection too late in the course of illness (usually more than 7-10 days), they also may cross-react with serologic responses to seasonal coronaviruses and the rate and kinetics of serological response has not been clearly defined so far. However, there is anticipated value in using improved serological testing in the future for public and occupational health monitoring and assessment. Key publications are listed below.

Key Publications on Diagnostic and Serology Testing: 

Molecular Testing:

  1. Wang X, Yao H, Xu X, Zhang P, Zhang M, Shao J, Xiao Y, Wang H. Limits of Detection of Six Approved RT–PCR Kits for the Novel SARS-coronavirus-2 (SARS-CoV-2). Clinical Chemistry. 2020 Apr 13. PMID: 32282874
  2. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Mar 16;1(ahead-of-print). PMID: 32172228
  3. Sung H, Yoo CK, Han MG, Lee SW, Lee H, Chun S, Lee WG, Min WK. Preparedness and Rapid Implementation of External Quality Assessment Helped Quickly Increase COVID-19 Testing Capacity in the Republic of Korea. Clinical Chemistry. PMID: 32321159
  4. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020 Feb 26:200642. PMID: 32101510
  5. Lassaunière R, Frische A, Harboe ZB, Nielsen AC, Fomsgaard A, Krogfelt KA, Jørgensen CS. Evaluation of nine commercial SARS-CoV-2 immunoassays. 2020 Jan 1
  6. Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. Journal of Clinical Pathology. 2020 May 1;73(5):239-42. PMID: 32198191
  7. Zhen W, Manji R, Smith E, Berry GJ. Comparison of Four Molecular In Vitro Diagnostic Assays for the Detection of SARS-CoV-2 in Nasopharyngeal Specimens. Journal of Clinical Microbiology. 2020 Apr 27. PMID: 32341143
  8. Lin C, Xiang J, Yan M, Li H, Huang S, Shen C. Comparison of throat swabs and sputum specimens for viral nucleic acid detection in 52 cases of novel coronavirus (SARS-Cov-2)-infected pneumonia (COVID-19). Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 16;1(ahead-of-print). PMID: 32301745
  9. Pan Y, Long L, Zhang D, Yan T, Cui S, Yang P, Wang Q, Ren S. Potential false-negative nucleic acid testing results for Severe Acute Respiratory Syndrome Coronavirus 2 from thermal inactivation of samples with low viral loads. Clinical Chemistry. 2020 Apr 4. PMID: 32246822
  10. Behrmann O, Bachmann I, Spiegel M, et al. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ). Clinical Chemistry. 2020 May 8. PMID: 32384153
  11. Peddu V, Shean RC, Xie H, et al. Metagenomic analysis reveals clinical SARS-CoV-2 infection and bacterial or viral superinfection and colonization. Clinical Chemistry. 2020 May 7. PMID: 32379863
  12. Dietzen DJ. Unleashing the Power of Laboratory Developed Tests: Closing gaps in COVID diagnosis and beyond. The Journal of Applied Laboratory Medicine. 2020 Apr 29.
  13. Basu A, Zinger T, Inglima K, Woo KM, Atie O, Yurasits L, See B, Aguero-Rosenfeld ME. Performance of the rapid Nucleic Acid Amplification by Abbott ID NOW COVID-19 in nasopharyngeal swabs transported in viral media and dry nasal swabs, in a New York City academic institution. bioRxiv. 2020 Jan 1. Preprint non-peer reviewed
  14. Ramdas K, Darzi A, Jain S. ‘Test, re-test, re-test’: using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nature Medicine. 2020 May 12:1-2. PMID: 32398878
  15. Wacharapluesadee S, Kaewpom T, Ampoot W, et al. Evaluating the efficiency of specimen pooling for PCR-based detection of COVID-19. J Med Virol. 2020 May 13;10.1002/jmv.26005. PMID: 32401343
  16. Basu A, Zinger T, Inglima K, Woo KM, Atie O, Yurasits L, See B, Aguero-Rosenfeld ME. Performance of Abbott ID NOW COVID-19 rapid nucleic acid amplification test in nasopharyngeal swabs transported in viral media and dry nasal swabs, in a New York City academic institution. J Clin Microbiol. 2020 May 29:JCM.01136-20. doi: 10.1128/JCM.01136-20. Epub ahead of print. PMID: 32471894.
  17. Traugott M, Aberle SW, Aberle JH, Griebler H, Karolyi M, Pawelka E, Puchhammer-Stöckl E, Zoufaly A, Weseslindtner L. Performance of SARS-CoV-2 antibody assays in different stages of the infection: Comparison of commercial ELISA and rapid tests. J Infect Dis. 2020 May 30:jiaa305. doi: 10.1093/infdis/jiaa305. Epub ahead of print. PMID: 32473021.
  18. Binnicker MJ. Emergence of a Novel Coronavirus Disease (COVID-19) and the Importance of Diagnostic Testing: Why Partnership between Clinical Laboratories, Public Health Agencies, and Industry Is Essential to Control the Outbreak. Clin Chem. 2020;66(5):664‐ doi:10.1093/clinchem/hvaa071. PMID: 32077933
  19. Shi J, Han D, Zhang R, Li J, Zhang R. Molecular and serological assays for SARS-CoV-2: insights from genome and clinical characteristics. Clin Chem. 2020 May 21:hvaa122. doi: 10.1093/clinchem/hvaa122. Epub ahead of print. PMID: 32437513.
  20. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Annals of Internal Medicine. 2020 May 23. PMID: 32422057
  21. Jehi L, Ji X, Milinovich A, Erzurum S, Rubin B, Gordon S, Young J, Kattan MW. Individualizing risk prediction for positive COVID-19 testing: results from 11,672 patients. Chest. 2020 Jun 10. doi: 10.1016/j.chest.2020.05.580. Epub ahead of print. PMCID: PMC7286244.
  22. Pilcher CD, Westreich D, Hudgens MG. Group Testing for Sars-Cov-2 to Enable Rapid Scale-Up of Testing and Real-Time Surveillance of Incidence [published online ahead of print, 2020 Jun 27]. J Infect Dis. 2020;jiaa378. doi:10.1093/infdis/jiaa378
  23. Vogels CBF, Brito AF, Wyllie AL, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets [published online ahead of print, 2020 Jul 10]. Nat Microbiol. 2020;10.1038/s41564-020-0761-6. doi:10.1038/s41564-020-0761-6
  24. Fung B, Gopez A, Servellita V, et al. Direct Comparison of SARS-CoV-2 Analytical Limits of Detection across Seven Molecular Assays [published online ahead of print, 2020 Jul 10]. J Clin Microbiol. 2020;JCM.01535-20. doi:10.1128/JCM.01535-20
  25. Mallett S, Allen J, Graziadio S, Taylor SA, Sakai NS, Green K, Suklan J, Hyde C, Shinkins B, Zhelev Z, Peters J. At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR based tests?: A systematic review of individual participant data. 2020 Jan 1.
  26. Mattiuzzi C, Henry BM, Sanchis-Gomar F, Lippi G. SARS-CoV-2 recurrent RNA positivity after recovering from coronavirus disease 2019 (COVID-19): a meta-analysis. Acta BioMed. 2020;91(3): Epub ahead of print. Doi: 10.23750/abm.v91i3.10303
  27. Artesi M, Bontems S, Göbbels P, Franckh M, Maes P, Boreux R, Meex C, Melin P, Hayette MP, Bours V, Durkin K. A recurrent mutation at position 26,340 of SARS-CoV-2 is associated with failure of the E-gene qRT-PCR utilized in a commercial dual-target diagnostic assay. Journal of Clinical Microbiology. 2020 Jul 20.
  28. Matheeussen V, Corman VM, Mantke OD, McCulloch E, Lammens C, Goossens H, Niemeyer D, Wallace PS, Klapper P, Niesters HG, Drosten C. International external quality assessment for SARS-CoV-2 molecular detection and survey on clinical laboratory preparedness during the COVID-19 pandemic, April/May 2020. Eurosurveillance. 2020 Jul 9;25(27):2001223.
  29. Bossuyt PM. Testing COVID-19 tests faces methodological challenges. Journal of Clinical Epidemiology. 2020 Jul 3.
  30. Zhang Y, Wang C, Han M, et al. Discrimination of False Negative Results in RT-PCR Detection of SARS-CoV-2 RNAs in Clinical Specimens by Using an Internal Reference [published online ahead of print, 2020 Aug 4]. Virol Sin. 2020;1-10. doi:10.1007/s12250-020-00273-8
  31. Sriwijitalai W, Wiwanitkit V. Cost-Utility Analysis for Chest CT versus RT-PCR for COVID-19 Detection. Int J Prev Med. 2020;11:67. Published 2020 Jun 5. doi:10.4103/ijpvm.IJPVM_83_20
  32. Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020;98(7):495-504. doi:10.2471/BLT.20.253591
  33. Pourbagheri-Sigaroodi A, Bashash D, Fateh F, Abolghasemi H. Laboratory Findings in COVID-19 Diagnosis and Prognosis [published online ahead of print, 2020 Aug 13]. Clin Chim Acta. 2020;S0009-8981(20)30412-5. doi:10.1016/j.cca.2020.08.019
  34. Kumari P, Singh A, Rinchui Ngasainao M, et al. Potential diagnostics and therapeutic approaches in COVID-19 [published online ahead of print, 2020 Aug 11]. Clin Chim Acta. 2020;S0009-8981(20)30395-8. doi:10.1016/j.cca.2020.08.013
  35. Wang B, Hu M, Ren Y, et al. Evaluation of seven commercial SARS-CoV-2 RNA detection kits based on real-time polymerase chain reaction (PCR) in China [published online ahead of print, 2020 Jul 13]. Clin Chem Lab Med. 2020;/j/cclm.ahead-of-print/cclm-2020-0271/cclm-2020-0271.xml. doi:10.1515/cclm-2020-0271
  36. Rödel J, Egerer R, Suleyman A, et al. Use of the variplex™ SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis [published online ahead of print, 2020 Aug 31]. J Clin Virol. 2020;132:104616. doi:10.1016/j.jcv.2020.104616
  37. Michel D, Danzer KM, Groß R, et al. Rapid, convenient and efficient kit-independent detection of SARS-CoV-2 RNA [published online ahead of print, 2020 Sep 3]. J Virol Methods. 2020;113965. doi:10.1016/j.jviromet.2020.113965
  38. Mascuch SJ, Fakhretaha-Aval S, Bowman JC, et al. A blueprint for academic labs to produce SARS-CoV-2 RT-qPCR test kits [published online ahead of print, 2020 Sep 3]. J Biol Chem. 2020;jbc.RA120.015434. doi:10.1074/jbc.RA120.015434
  39. Sapkota D, Søland TM, Galtung HK, et al. COVID-19 salivary signature: diagnostic and research opportunities [published online ahead of print, 2020 Aug 7]. J Clin Pathol. 2020;jclinpath-2020-206834. doi:10.1136/jclinpath-2020-206834
  40. Campbell JR, Uppal A, Oxlade O, et al. Active testing of groups at increased risk of acquiring SARS-CoV-2 in Canada: costs and human resource needs [published online ahead of print, 2020 Sep 9]. CMAJ. 2020;cmaj.201128. doi:10.1503/cmaj.201128

Antigen Testing:

  1. Selove W, Rao LV. Performance of rapid SOFIA Influenza A+ B test compared to Luminex x-TAG respiratory viral panel assay in the diagnosis of influenza A, B, and subtype H3. Journal of Investigative Medicine. 2016 Apr 1;64(4):905-7. PMID: 26911275
  2. Blairon L, Wilmet A, Beukinga I, Tré-Hardy M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: experiences of a general hospital. Journal of Clinical Virology. 2020 May 30:104472. PMID: 32504944
  3. Mak GC, Cheng PK, Lau SS, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus [published online ahead of print, 2020 Jun 8]. J Clin Virol. 2020;129:104500. doi:10.1016/j.jcv.2020.104500
  4. Dinnes J, Deeks JJ, Adriano A, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2020;8:CD013705. Published 2020 Aug 26. doi:10.1002/14651858.CD013705
  5. Kyosei Y, Namba M, Yamura S, et al. Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2.Diagnostics (Basel). 2020;10(8):E594. Published 2020 Aug 14. doi:10.3390/diagnostics10080594
  6. Nuovo G, Tili E, Suster D, Matys E, Hupp L, Magro C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine [published online ahead of print, 2020 Aug 13].Ann Diagn Pathol. 2020;48:151600. doi:10.1016/j.anndiagpath.2020.151600
  7. Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis.J Clin Virol. 2020;129:104455. doi:10.1016/j.jcv.2020.104455
  8. Ogata AF, Maley AM, Wu C, et al. Ultra-sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease [published online ahead of print, 2020 Sep 8]. Clin Chem. 2020;hvaa213. doi:10.1093/clinchem/hvaa213
  9. Ogawa T, Fukumori T, Nishihara Y, et al. Another false-positive problem for a SARS-CoV-2 antigen test in Japan [published online ahead of print, 2020 Aug 25]. J Clin Virol. 2020;131:104612. doi:10.1016/j.jcv.2020.104612

Serology Testing:

  1. Ju B, Zhang Q, Ge X, Wang R, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Ge J. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv. 2020 Jan 1.
  2. Castro R, Luz PM, Wakimoto MD, Veloso VG, Grinsztejn B, Perazzo H. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. The Brazilian Journal of Infectious Diseases. 2020 Apr 18. PMID: 32330437
  3. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases. 2020 Jan 1. PMID: 32221519
  4. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology. 2020 Apr 21:1-3. PMID: 32317716
  5. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, Ling Y, Zhang Y, Xun J, Lu L, Jiang S. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Preprint at medrxiv
  6. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences. 2020 Apr 6. PMID: 32253318
  7. Kran AM. Evaluation of eleven rapid tests for detection of antibodies against SARS-CoV-2. 2020 Apr 24
  8. Padoan A, Cosma C, Sciacovelli L, Faggian D, Plebani M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 16;1(ahead-of-print). PMID: 32301749
  9. Azzi L, Carcano G, Gianfagna F, Grossi P, Dalla Gasperina D, Genoni A, Fasano M, Sessa F, Tettamanti L, Carinci F, Maurino V. SALIVA IS A RELIABLE TOOL TO DETECT SARS-CoV-2. Journal of Infection. 2020 Apr 14. PMID: 32298676
  10. Perera RA, Mok CK, Tsang OT, Lv H, Ko RL, Wu NC, Yuan M, Leung WS, Chan JM, Chik TS, Choi CY. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Eurosurveillance. 2020 Apr 23;25(16):2000421. PMID: 32347204
  11. Zeng QL, Yu ZJ, Gou JJ, Li GM, Ma SH, Zhang GF, Xu JH, Lin WB, Cui GL, Zhang MM, Li C. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in COVID-19 Patients. The Journal of Infectious Diseases. 2020 Apr 29. PMID: 32348485
  12. Farnsworth CW, Anderson NW. SARS-CoV-2 Serology: Much Hype, Little Data. Clinical Chemistry. 2020 Apr 28. PMID: 32343775
  13. Bryan A, Pepper G, Wener MH, et al. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J Clin Microbiol. 2020 May 7. PMID: 32381641
  14. Adams ER, Anand R, Andersson MI, Auckland K, Baillie JK, Barnes E, Bell J, Berry T, Bibi S, Carroll M, Chinnakannan S. Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. 2020 Jan 1 - non-peer reviewed
  15. Qu J, Wu C, Li X, Zhang G, Jiang Z, Li X, Liu L. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases. 2020 Apr 27. PMID: 32337590
  16. Anderson DE, Tan CW, Chia WN, Young BE, Linster M, Low JH, Tan YJ, Chen MI, Smith GJD, Leo YS, Lye DC, Wang LF. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerg Microbes Infect. 2020 Dec;9(1):900-902. PMID: 32380903.
  17. Diamandis P, Prassas I, Diamandis EP. Antibody tests for COVID-19: drawing attention to the importance of analytical specificity. Clinical chemistry and laboratory medicine. 2020 May 9. PMID: 32386187
  18. Tang MS, Hock KG, Logsdon NM, et al. Clinical Performance of Two SARS-CoV-2 Serologic Assays. Clin Chem. May 13 2020;hvaa120. PMID: 32402061
  19. Montesinos I, Gruson D, Kabamba B, Dahma H, Van den Wijngaert S, Reza S, Carbone V, Vandenberg O, Gulbis B, Wolff F, Rodriguez-Villalobos H. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020 May 5;128:104413. PMID: 32403010
  20. Riccò M, Ferraro P, Gualerzi G, Ranzieri S, Henry BM, Said YB, Pyatigorskaya NV, Nevolina E, Wu J, Bragazzi NL, Signorelli C. Point-of-Care Diagnostic Tests for Detecting SARS-CoV-2 Antibodies: A Systematic Review and Meta-Analysis of Real-World Data. Journal of Clinical Medicine. 2020 May;9(5):1515. PMID: 32443459
  21. Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics (Basel). 2020 May 19;10(5):E319. PMID: 32438677
  22. Kofler N, Baylis F. Ten reasons why immunity passports are a bad idea. Nature. 2020 May;581(7809):379-381 (opinion). PMID: 32439992
  23. Dinges et al. Seroprevalence of SARS-CoV-2 among children visiting a hospital during the initial Seattle outbreak (non-peer reviewed). https://doi.org/10.1101/2020.05.26.20114124
  24. Nuccetelli M, Pieri M, Grelli S, Ciotti M, Miano R, Andreoni M, Bernardini S. SARS-CoV-2 infection serology: a useful tool to overcome lockdown?. Cell Death Discovery. 2020 May 26;6(1):1-9.
  25. Ong DS, Stijn J, Lindeboom FA, Koeleman JG. Comparison of diagnostic accuracies of rapid serological tests and ELISA to molecular diagnostics in patients with suspected COVID-19 presenting to the hospital. Clinical Microbiology and Infection. 2020 Jun 2. PMID: 32502646
  26. Tang MS, Hock KG, Logsdon NM, Hayes JE, Gronowski AM, Anderson NW, Farnsworth CW. Clinical Performance of the Roche SARS-CoV-2 Serologic Assay. Clin Chem. 2020 Jun 2:hvaa132. doi: 10.1093/clinchem/hvaa132. Epub ahead of print. PMID: 32484860.
  27. Bermingham WH, Wilding T, Beck S, Huissoon A. SARS-CoV-2 serology: Test, test, test, but interpret with caution! Clin Med (Lond). 2020 Jun 2:clinmed.2020-0170. doi: 10.7861/clinmed.2020-0170. Epub ahead of print. PMID: 32487681.
  28. Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S, Moran A, Tesic V. Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. J Clin Virol. 2020 May 23;129:104468. doi: 10.1016/j.jcv.2020.104468. Epub ahead of print. PMID: 32485620; PMCID: PMC7255182.
  29. Plebani M, Padoan A, Negrini D, Carpinteri B, Sciacovelli L. Diagnostic performances and thresholds: the key to harmonization in serological SARS-CoV-2 assays? [published online ahead of print, 2020 May 30]. Clin Chim Acta. 2020;S0009-8981(20)30263-1. doi:10.1016/j.cca.2020.05.050. PMID: 32485157
  30. Egger M, Bundschuh C, Wiesinger K, Gabriel C, Clodi M, Mueller T, Dieplinger B. Comparison of the Elecsys® Anti-SARS-CoV-2 immunoassay with the EDITMenzyme linked immunosorbent assays for the detection of SARS-CoV-2 antibodies in human plasma. Clin Chim Acta. 2020 May 30:S0009-8981(20)30261-8. doi: 10.1016/j.cca.2020.05.049. Epub ahead of print. PMID: 32485155; PMCID: PMC7261064.
  31. Bélec L, Péré H, Bouassa RM, Veyer D, Jenabian MA. Potential pitfalls of routine SARS-CoV-2 serology for mass screening. J Med Virol. 2020 Jun 2. doi: 10.1002/jmv.26034. Epub ahead of print. PMID: 32484942.
  32. Eroshenko N, Gill T, Keaveney MK, Church GM, Trevejo JM, Rajaniemi H. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nat Biotechnol. 2020 Jun 5. doi: 10.1038/s41587-020-0577-1. Epub ahead of print. PMID: 32504046.
  33. To KK, Cheng VC, Cai JP, Chan KH, Chen LL, Wong LH, Choi CY, Fong CH, Ng AC, Lu L, Luo CT. Seroprevalence of SARS-CoV-2 in Hong Kong and in residents evacuated from Hubei province, China: a multicohort study. The Lancet Microbe. 2020 Jun 3. DOI:https://doi.org/10.1016/S2666-5247(20)30053-7
  34. Luchsinger LL, Ransegnola B, Jin D, Muecksch F, Weisblum Y, Bao W, George PJ, Rodriguez M, Tricoche N, Schmidt F, Gao C. Serological Analysis of New York City COVID19 Convalescent Plasma Donors. medRxiv. 2020 Jan 1. https://doi.org/10.1101/2020.06.08.20124792
  35. Behrens GMN, Cossmann A, Stankov MV, Witte T, Ernst D, Happle C, Jablonka A. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals. Infection. 2020 Jun 10:1–4. doi: 10.1007/s15010-020-01461-0. Epub ahead of print. PMID: 32524515; PMCID: PMC7286418.
  36. Chew KL, Tan SS, Saw S, Pajarillaga A, Zaine S, Khoo C, Wang W, Tambyah P, Jureen R, Sethi SK. Clinical evaluation of serological IgG antibody response on the Abbott Architect for established SARS-CoV-2 infection. Clinical Microbiology and Infection. 2020 Jun 9. PMID: 32531475
  37. Premkumar L, Segovia-Chumbez B, Jadi R, et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020;5(48):eabc8413. doi:10.1126/sciimmunol.abc8413
  38. Theel ES, Harring J, Hilgart H, Granger D. Performance Characteristics of Four High-Throughput Immunoassays for Detection of IgG Antibodies against SARS-CoV-2 [published online ahead of print, 2020 Jun 8]. J Clin Microbiol. 2020;JCM.01243-20. doi:10.1128/JCM.01243-20
  39. Sarina Yang H, Racine-Brzostek SE, Lee WT, et al. SARS-CoV-2 antibody characterization in emergency department, hospitalized and convalescent patients by two semi-quantitative immunoassays [published online ahead of print, 2020 Jun 4]. Clin Chim Acta. 2020;509:117‐ doi:10.1016/j.cca.2020.06.004
  40. Respiratory Virus Infections Working Group1. Canadian Public Health Laboratory Network Statement on Point-of-Care Serology Testing in COVID-19. Can Commun Dis Rep. 2020 May 7;46(5):119-120. doi: 10.14745/ccdr.v46i05a03. PMID: 32558808; PMCID:
  41. Caini S, Bellerba F, Corso F, Díaz-Basabe A, Natoli G, Paget J, Facciotti F, De Angelis SP, Raimondi S, Palli D, Mazzarella L, Pelicci PG, Vineis P, Gandini S. Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Euro Surveill. 2020 Jun;25(23). doi: 10.2807/1560-7917.ES.2020.25.23.2000980. PMID:
  42. A Path Forward for SRAS-CoV-2 Testing. https://www.aacc.org/publications/cln/cln-stat/2020/june/18/a-path-forward-for-sars-cov-2-testing
  43. Jääskeläinen AJ, Kuivanen S, Kekäläinen E, Ahava MJ, Loginov R, Kallio-Kokko H, Vapalahti O, Jarva H, Kurkela S, Lappalainen M. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. J Clin Virol. 2020 Jun 15;129:104512. doi: 10.1016/j.jcv.2020.104512. Epub ahead of print. PMID: 32563180.
  44. Wang P. Combination of Serological Total Antibody and RT-PCR Test for Detection of SARS-CoV-2 Infections. J Virol Methods. 2020 Jun 15;283:113919. doi: 10.1016/j.jviromet.2020.113919. Epub ahead of print. PMID: 32554043
  45. Han X, Wei X, Alwalid O, Cao Y, Li Y, Wang L, Shi H. Severe Acute Respiratory Syndrome Coronavirus 2 among Asymptomatic Workers Screened for Work Resumption, China. Emerg Infect Dis. 2020 Jun 17;26(9). doi: 10.3201/eid2609.201848. Epub ahead of print. PMID: 32553070.
  46. Clapham H, Hay J, Routledge I, Takahashi S, Choisy M, Cummings D, Grenfell B, Metcalf CJE, Mina M, Barraquer IR, Salje H, Tam CC. Seroepidemiologic Study Designs for Determining SARS-COV-2 Transmission and Immunity. Emerg Infect Dis. 2020 Jun 16;26(9). doi: 10.3201/eid2609.201840. Epub ahead of print. PMID: 32544053.
  47. Liu ZL, Liu Y, Wan LG, Xiang TX, Le AP, Liu P, Peiris M, Poon LLM, Zhang W. Antibody profiles in mild and severe cases of COVID-19. Clin Chem. 2020 Jun 10:hvaa137. doi: 10.1093/clinchem/hvaa137. Epub ahead of print. PMID: 32521002.
  48. Favresse J, Eucher C, Elsen M, Marie TH, Dogné JM, Douxfils J. Clinical performance of the Elecsys electrochemiluminescent immunoassay for the detection of SARS-CoV-2 total antibodies. Clin Chem. 2020 Jun 2:hvaa131. doi: 10.1093/clinchem/hvaa131. Epub ahead of print. PMID: 32484887.
  49. Lerner AM, Eisinger RW, Lowy DR, Petersen LR, Humes R, Hepburn M, Cassetti MC. The COVID-19 Serology Studies Workshop: Recommendations and Challenges. Immunity. 2020 Jun 23. https://doi.org/10.1016/j.immuni.2020.06.012
  50. Nicol T, Lefeuvre C, Serri O, et al. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech) [published online ahead of print, 2020 Jun 15]. J Clin Virol. 2020;129:104511. doi:10.1016/j.jcv.2020.104511
  51. Yan M, Zheng Y, Sun Y, et al. Analysis of the diagnostic value of serum specific antibody testing for coronavirus disease 2019 [published online ahead of print, 2020 Jun 27]. J Med Virol. 2020;10.1002/jmv.26230. doi:10.1002/jmv.26230
  52. Christenson RH. Out of the Darkness-Into the Light: Value of SARS-CoV-2 Antibody Testing in Populations to Benefit Public Health and in Individuals for Peace of Mind [published online ahead of print, 2020 Jun 27]. J Appl Lab Med. 2020;jfaa105. doi:10.1093/jalm/jfaa105
  53. Espejo AP, Akgun Y, Al Mana AF, et al. Review of Current Advances in Serologic Testing for COVID-19 [published online ahead of print, 2020 Jun 25]. Am J Clin Pathol. 2020;aqaa112. doi:10.1093/ajcp/aqaa112
  54. Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020;370:m2516. Published 2020 Jul 1. doi:10.1136/bmj.m2516
  55. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020;6:CD013652. Published 2020 Jun 25. doi:10.1002/14651858.CD013652
  56. Weidner L, Gänsdorfer S, Unterweger S, et al. Quantification of SARS-CoV-2 antibodies with eight commercially available immunoassays [published online ahead of print, 2020 Jul 6]. J Clin Virol. 2020;129:104540. doi:10.1016/j.jcv.2020.104540
  57. Haselmann V, Kittel M, Gerhards C, et al. Comparison of test performance of commercial anti-SARS-CoV-2 immunoassays in serum and plasma samples [published online ahead of print, 2020 Jul 8]. Clin Chim Acta. 2020;S0009-8981(20)30323-5. doi:10.1016/j.cca.2020.07.007
  58. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays [published online ahead of print, 2020 Jun 14]. Reprod Biomed Online. 2020;S1472-6483(20)30318-7. doi:10.1016/j.rbmo.2020.06.001
  59. Abe KT, Li Z, Samson R, Samavarchi-Tehrani P, Valcourt EJ, Wood H, Budylowski P, Dupuis A, Girardin RC, Rathod B, Colwill K. A simple protein-based SARS-CoV-2 surrogate neutralization assay. 2020 Jan 1.
  60. Favresse J, Eucher C, Elsen M, Marie TH, Dogné JM, Douxfils J, Bouge CS. Clinical performance of the Elecsys electrochemiluminescent immunoassay for the detection of SARS-CoV-2 total antibodies. Clinical Chemistry. 2020 Jun 2.
  61. Liu ZL, Liu Y, Wan LG, Xiang TX, Le AP, Liu P, Peiris M, Poon LL, Zhang W. Antibody profiles in mild and severe cases of COVID-19. Clinical chemistry. 2020 Jun 10.
  62. Naides SJ. Correctly Interpreting SARS-CoV-2 Serologic Assays. Clinical Chemistry. 2020 Jul 17.
  63. Gronowski AM, Farnsworth CW. In Reply: Correctly Interpreting SARS-CoV-2 Serologic Assays. Clinical Chemistry. 2020 Jul 17.
  64. Paiva KJ, Grisson RD, Chan PA, et al. Validation and Performance Comparison of Three SARS-CoV-2 Antibody Assays [published online ahead of print, 2020 Jul 25]. J Med Virol. 2020;1002/jmv.26341. doi:10.1002/jmv.26341
  65. Zhang C, Lin L, Tang D, et al. Antibody responses to SARS-CoV-2 in healthy individuals returning to Shenzhen [published online ahead of print, 2020 Jul 25]. J Med Virol. 2020;1002/jmv.26355. doi:10.1002/jmv.26355
  66. Pancrazzi A, Magliocca P, Lorubbio M, et al. Comparison of serologic and molecular SARS-CoV 2 results in a large cohort in Southern Tuscany demonstrates a role for serologic testing to increase diagnostic sensitivity [published online ahead of print, 2020 Jul 20]. Clin Biochem. 2020;S0009-9120(20)30791-8. doi:10.1016/j.clinbiochem.2020.07.002
  67. Gruer L, Bhopal R. Rapid roll out of SARS-CoV-2 antibody testing: even at high levels of specificity, an important proportion of test results will be false positives. BMJ. 2020;370:m2910. Published 2020 Jul 22. doi:10.1136/bmj.m2910
  68. Havers FP, Reed C, Lim T, et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020 [published online ahead of print, 2020 Jul 21]. JAMA Intern Med. 2020;10.1001/jamainternmed.2020.4130. doi:10.1001/jamainternmed.2020.4130
  69. Larremore DB, Bubar KM, Grad YH. Implications of test characteristics and population seroprevalence on 'immune passport' strategies [published online ahead of print, 2020 Jul 20]. Clin Infect Dis. 2020;ciaa1019. doi:10.1093/cid/ciaa1019
  70. Lippi G, Plebani M. SARS-CoV-2 antibodies titration: a reappraisal. Lab Medicine.
  71. Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection - Challenges and Implications. N Engl J Med. 2020;383(6):e38. doi:10.1056/NEJMp2015897
  72. Perkmann T, Perkmann-Nagele N, Breyer MK, et al. Side by side comparison of three fully automated SARS-CoV-2 antibody assays with a focus on specificity [published online ahead of print, 2020 Aug 10]. Clin Chem. 2020;hvaa198. doi:10.1093/clinchem/hvaa198
  73. Harb R, Remaley AT, Sacks DB. Evaluation of Three Commercial Automated Assays for the Detection of anti-SARS-CoV-2 Antibodies [published online ahead of print, 2020 Aug 6]. Clin Chem. 2020;hvaa193. doi:10.1093/clinchem/hvaa193
  74. Harilal D, Ramaswamy S, Loney T, et al. SARS-CoV-2 Whole Genome Amplification and Sequencing for Effective Population-Based Surveillance and Control of Viral Transmission [published online ahead of print, 2020 Jul 27]. Clin Chem. 2020;hvaa187. doi:10.1093/clinchem/hvaa187
  75. Seegmiller JC, Kokaisel EL, Story SJ, et al. Method comparison of SARS-CoV-2 serology assays involving three commercially available platforms and a novel in-house developed enzyme-linked immunosorbent assay [published online ahead of print, 2020 Aug 11]. Clin Biochem. 2020;S0009-9120(20)30812-2. doi:10.1016/j.clinbiochem.2020.08.004
  76. Haselmann V, Kittel M, Gerhards C, et al. Comparison of test performance of commercial anti-SARS-CoV-2 immunoassays in serum and plasma samples [published online ahead of print, 2020 Jul 9]. Clin Chim Acta. 2020;510:73-78. doi:10.1016/j.cca.2020.07.007
  77. Qian C, Zhou M, Cheng F, et al. Development and multicenter performance evaluation of fully automated SARS-CoV-2 IgM and IgG immunoassays [published online ahead of print, 2020 Jul 15]. Clin Chem Lab Med. 2020;/j/cclm.ahead-of-print/cclm-2020-0548/cclm-2020-0548.xml. doi:10.1515/cclm-2020-0548
  78. Van Caeseele P, Bailey D, Forgie SE, Dingle TC, Krajden M. SARS-CoV-2 (COVID-19) serology: implications for clinical practice, laboratory medicine and public health [published online ahead of print, 2020 Aug 3]. CMAJ. 2020;cmaj.201588. doi:10.1503/cmaj.201588
  79. Zhang C, Zhou L, Liu H, et al. Establishing A High Sensitivity Detection Method for SARS-CoV-2 IgM/IgG and Developing a Clinical Application of this Method [published online ahead of print, 2020 Aug 17]. Emerg Microbes Infect. 2020;1-27. doi:10.1080/22221751.2020.1811161
  80. Lustig Y, Keler S, Kolodny R, et al. Potential antigenic cross-reactivity between SARS-CoV-2 and Dengue viruses [published online ahead of print, 2020 Aug 14]. Clin Infect Dis. 2020;ciaa1207. doi:10.1093/cid/ciaa1207
  81. McAndrews KM, Dowlatshahi DP, Dai J, et al. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications on COVID-19 immunity [published online ahead of print, 2020 Aug 14]. JCI Insight. 2020;142386. doi:10.1172/jci.insight.142386
  82. Flower B, Brown JC, Simmons B, et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey [published online ahead of print, 2020 Aug 12]. Thorax. 2020;thoraxjnl-2020-215732. doi:10.1136/thoraxjnl-2020-215732
  83. Muruato AE, Fontes-Garfias CR, Ren P, et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat Commun. 2020;11(1):4059. Published 2020 Aug 13. doi:10.1038/s41467-020-17892-0
  84. Infantino M, Manfredi M, Grossi V, et al. Closing the Serological Gap in the Diagnostic Testing for COVID-19: The Value of Anti-SARS-CoV-2 IgA Antibodies [published online ahead of print, 2020 Aug 13]. J Med Virol. 2020;10.1002/jmv.26422. doi:10.1002/jmv.26422
  85. Qiu X, Xiang Y, Sun J, et al. Dynamic changes of throat swabs RNA and serum antibodies for SARS-CoV-2 and their diagnostic performances in patients with COVID-19 [published online ahead of print, 2020 Aug 12]. Emerg Microbes Infect. 2020;1-33. doi:10.1080/22221751.2020.1810133
  86. Traugott MT, Hoepler W, Seitz T, et al. Diagnosis of COVID-19 using multiple antibody assays in two cases with negative PCR results from nasopharyngeal swabs [published online ahead of print, 2020 Aug 12]. Infection. 2020;10.1007/s15010-020-01497-2. doi:10.1007/s15010-020-01497-2
  87. Atchison C, Pristerà P, Cooper E, et al. Usability and acceptability of home-based self-testing for SARS-CoV-2 antibodies for population surveillance [published online ahead of print, 2020 Aug 12]. Clin Infect Dis. 2020;ciaa1178. doi:10.1093/cid/ciaa1178
  88. Zheng Y, Yan M, Wang L, et al. Analysis of the application value of serum antibody detection for staging of COVID-19 infection [published online ahead of print, 2020 Jul 23]. J Med Virol. 2020;10.1002/jmv.26330. doi:10.1002/jmv.26330
  89. Johnson M, Wagstaffe HR, Gilmour KC, et al. Evaluation of a novel multiplexed assay for determining IgG levels and functional activity to SARS-CoV-2 [published online ahead of print, 2020 Aug 2]. J Clin Virol. 2020;130:104572. doi:10.1016/j.jcv.2020.104572
  90. Brochot E, Demey B, Handala L, François C, Duverlie G, Castelain S. Comparison of different serological assays for SARS-CoV-2 in real life [published online ahead of print, 2020 Aug 2]. J Clin Virol. 2020;130:104569. doi:10.1016/j.jcv.2020.104569
  91. den Hartog G, Schepp RM, Kuijer M, et al. SARS-CoV-2-specific antibody detection for sero-epidemiology: a multiplex analysis approach accounting for accurate seroprevalence [published online ahead of print, 2020 Aug 8]. J Infect Dis. 2020;jiaa479. doi:10.1093/infdis/jiaa479
  92. Van Caeseele P, Bailey D, Forgie SE, Dingle TC, Krajden M. SARS-CoV-2 (COVID-19) serology: implications for clinical practice, laboratory medicine and public health [published online ahead of print, 2020 Aug 3]. CMAJ. 2020;cmaj.201588. doi:10.1503/cmaj.201588
  93. Mairesse A, Favresse J, Eucher C, et al. High clinical performance and quantitative assessment of antibody kinetics using a dual recognition assay for the detection of SARS-CoV-2 IgM and IgG antibodies [published online ahead of print, 2020 Aug 25].Clin Biochem. 2020;S0009-9120(20)30817-1. doi:10.1016/j.clinbiochem.2020.08.009
  94. Dora AV, Winnett A, Fulcher JA, et al. Using Serologic Testing to Assess the Effectiveness of Outbreak Control Efforts, Serial PCR Testing, and Cohorting of Positive SARS-CoV-2 Patients in a Skilled Nursing Facility [published online ahead of print, 2020 Aug 28].Clin Infect Dis. 2020;ciaa1286. doi:10.1093/cid/ciaa1286
  95. Whitman JD, Hiatt J, Mowery CT, et al. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance [published online ahead of print, 2020 Aug 27].Nat Biotechnol. 2020;10.1038/s41587-020-0659-0. doi:10.1038/s41587-020-0659-0
  96. He L, Zeng Y, Zeng C, et al. Positive Rate of Serology and RT-PCR for COVID-19 among Healthcare Workers during Different Periods in Wuhan, China [published online ahead of print, 2020 Aug 24].J Infect. 2020;S0163-4453(20)30561-2. doi:1016/j.jinf.2020.08.027
  97. Loeffelholz MJ. Evaluation of High Throughput Serological Tests for SARS-CoV-2 [published online ahead of print, 2020 Aug 25].J Clin Microbiol. 2020;JCM.02179-20. doi:1128/JCM.02179-20
  98. Peterhoff D, Glück V, Vogel M, et al. A highly specific and sensitive serological assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with neutralization [published online ahead of print, 2020 Aug 21].Infection. 2020;1-8. doi:1007/s15010-020-01503-7
  99. van Tol S, Mögling R, Li W, et al. Accurate Serology for SARS-CoV-2 and common Human Coronaviruses using a Multiplex Approach [published online ahead of print, 2020 Aug 20].Emerg Microbes Infect. 2020;1-24. doi:1080/22221751.2020.1813636
  100. Padoan A, Bonfante F, Zuin S, Cosma C, Basso D, Plebani M. Clinical performances of an ELISA for SARS-CoV-2 antibody assay and correlation with neutralization activity [published online ahead of print, 2020 Aug 17].Clin Chim Acta. 2020;S0009-8981(20)30417-4. doi:1016/j.cca.2020.08.024
  101. Chan CW, Parker K, Tesic V, et al. Analytical and Clinical Evaluation of the Automated Elecsys Anti-SARS-CoV-2 Antibody Assay on the Roche cobas e602 Analyzer [published online ahead of print, 2020 Aug 20].Am J Clin Pathol. 2020;aqaa155. doi:1093/ajcp/aqaa155
  102. Guedez-López GV, Alguacil-Guillén M, González-Donapetry P, et al. Evaluation of three immunochromatographic tests for rapid detection of antibodies against SARS-CoV-2 [published online ahead of print, 2020 Aug 17].Eur J Clin Microbiol Infect Dis. 2020;1-9. doi:1007/s10096-020-04010-7
  103. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study [published online ahead of print, 2020 Aug 6].J Clin Virol. 2020;130:104575. doi:1016/j.jcv.2020.104575
  104. Soleimani R, Khourssaji M, Gruson D, et al. Clinical usefulness of fully automated chemiluminescent immunoassay for quantitative antibody measurements in COVID-19 patients [published online ahead of print, 2020 Aug 14].J Med Virol. 2020;10.1002/jmv.26430. doi:1002/jmv.26430
  105. Tan SS, Saw S, Chew KL, et al. Comparative Clinical Evaluation of the Roche Elecsys and Abbott SARS-CoV-2 Serology assays for COVID-19 [published online ahead of print, 2020 Sep 9]. Arch Pathol Lab Med. 2020;10.5858/arpa.2020-0499-SA. doi:10.5858/arpa.2020-0499-SA
  106. Knauer MJ, Hedley BD, Bhayana V, Payne M, Chin-Yee I, Delport J. Interim analysis of the Clinical performance of five SARS-Cov-2 Serology Assays [published online ahead of print, 2020 Sep 6]. Clin Biochem. 2020;S0009-9120(20)30837-7. doi:10.1016/j.clinbiochem.2020.09.002
  107. Bisoffi Z, Pomari E, Deiana M, et al. Sensitivity, Specificity and Predictive Values of Molecular and Serological Tests for COVID-19: A Longitudinal Study in Emergency Room. Diagnostics (Basel). 2020;10(9):E669. Published 2020 Sep 3. doi:10.3390/diagnostics10090669
  108. Yamamoto S, Saito M, Nagai E, et al. Seroconversion against SARS-CoV-2 occurred after the recovery in patients with COVID-19 [published online ahead of print, 2020 Sep 8]. J Med Virol. 2020;10.1002/jmv.26495. doi:10.1002/jmv.26495
  109. Tang MS, Case JB, Franks CE, et al. Association between SARS-CoV-2 neutralizing antibodies and commercial serological assays [published online ahead of print, 2020 Sep 7]. Clin Chem. 2020;hvaa211. doi:10.1093/clinchem/hvaa211
  110. Péré H, Védie B, Vernet R, et al. Unexpected diagnosis of COVID-19-associated disorders by SARS-CoV-2-specific serology [published online ahead of print, 2020 Aug 4]. J Clin Virol. 2020;132:104568. doi:10.1016/j.jcv.2020.104568
  111. Hoste ACR, Venteo A, Fresco-Taboada A, et al. Two serological approaches for detection of antibodies to SARS-CoV-2 in different scenarios: a screening tool and a point-of-care test [published online ahead of print, 2020 Aug 11]. Diagn Microbiol Infect Dis. 2020;98(4):115167. doi:10.1016/j.diagmicrobio.2020.115167
  112. Behrens GMN, Cossmann A, Stankov MV, et al. Strategic Anti-SARS-CoV-2 Serology Testing in a Low Prevalence Setting: The COVID-19 Contact (CoCo) Study in Healthcare Professionals [published online ahead of print, 2020 Sep 4]. Infect Dis Ther. 2020;10.1007/s40121-020-00334-1. doi:10.1007/s40121-020-00334-1
  113. Rostad CA, Chahroudi A, Mantus G, et al. Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome (MIS-C) [published online ahead of print, 2020 Sep 2]. Pediatrics. 2020;e2020018242. doi:10.1542/peds.2020-018242
  114. Baron RC, Risch L, Weber M, et al. Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study [published online ahead of print, 2020 Aug 31]. Clin Chem Lab Med. 2020;/j/cclm.ahead-of-print/cclm-2020-0978/cclm-2020-0978.xml. doi:10.1515/cclm-2020-0978
  115. Garnett E, Jung J, Tam E, et al. Clinical Validation and Performance Evaluation of the Automated Vitros Total Anti-SARS-CoV-2 Antibodies Assay for Screening of Serostatus in COVID-19 [published online ahead of print, 2020 Aug 31]. Am J Clin Pathol. 2020;aqaa157. doi:10.1093/ajcp/aqaa157
  116. Fontanet A, Cauchemez S. COVID-19 herd immunity: where are we? [published online ahead of print, 2020 Sep 9]. Nat Rev Immunol. 2020;10.1038/s41577-020-00451-5. doi:10.1038/s41577-020-00451-5

Breath Testing:

  1. https://www.ifcc.org/media/478584/covid-19-survey.pdf

Additional Resources Related to Testing:

Food & Drug Administration (FDA): FAQs on Diagnostic Testing for COVID-19 (Recently Updated with Guidance for Serology Testing)

John Hopkin’s Center for Health Security: Serology Testing for COVID-19

 ____________________________________________________________________

4. Biosafety Guidelines for the Clinical Laboratory

It is of the utmost importance that proper biosafety guidelines are followed by clinical laboratories when handling samples from suspected COVID-19 patients. The IFCC TF on COVID-19 recently published recommendations for biosafety measures for preventing infection from COVID-19 in clinical laboratories accessible at the following link. Key summary recommendations are listed below:

How can biosafety measures be implemented in clinical chemistry laboratories during the COVID-19 pandemic?

1a. Laboratories should adopt social distancing measures within the workplace as much as possible and feasible.

1b. The potential exposure and health status of the laboratory personnel is monitored daily.

What personal hygiene and personal protective equipment (PPE) should be used in clinical chemistry laboratories during the COVID-19 pandemic?

2a. Laboratory professionals must adhere rigorously to universally recommended standard precautions (i.e. frequent hand washing for at least 40 s with soap and water, or hand sanitizer when there is no access to handwashing, and to avoid touching the face) to minimize the risk of exposure to the virus.

2b. Laboratory professionals must wear standard laboratory PPE (i.e. masks and gloves, laboratory coat or gown, and eye protection) at all times.

2c. Laboratory professionals should wear preferably an N95 mask while engaged in aerosol-generating procedures on all non-centrifuged samples potentially containing vital SARS-CoV-2 particles.

How should laboratory staff handle routine patient specimens during the COVID-19 pandemic?

3a. For routine testing of blood, urine and body fluids, laboratories should use automated instruments and analyzers with closed preanalytical robotics, where possible.

3b. When manually handling non-respiratory specimens, aerosol-generating non-centrifuged sample processing steps should be carried out in a BSL2 cabinet, wearing the recommended PPE.

3c. The specimens should be sealed immediately after testing. High-risk specimens should be promptly disinfected or autoclaved.

3d. If there are no accidents, wait for more than 10 min for further processing after centrifugation stops. When the specimen suspected of COVID-19 is centrifuged, the operator must not leave the centrifuge. If an accident is suspected, or in some way the centrifugation is abnormal, stop the centrifugation. After replacing the biosafety level 3 protection equipment, stop centrifugation for more than 30 min, carefully open the lid, and spray and sterilize with 75% ethanol or other disinfectants. Take out the centrifuge rotor with blood collection tubes and then put them in the biosafety cabinet to treat.

How should staff decontaminate laboratory equipment and surfaces during the COVID-19 pandemic?

4a. Laboratory staff should decontaminate working surfaces with standard disinfectants approved for SARS-CoV-2 infections. The frequency shall be decided on local basis according to the volume of work, but shall not be basically less frequent than every 3 h.

4b. If a sample positive for SARS-CoV-2 is suspected of being leaked or contaminates the biosafety cabinet and bench and causes limited pollution: use a disinfectant with an effective chlorine content of 5500 mg/L for disinfection for more than 30 min; the disinfectant must be prepared immediately and used within 24 h. If positive specimens cause laboratory contamination: keep the laboratory space closed to prevent access by unauthorized personnel and to prevent the spread of pollutants. Cover the contaminated area with a towel containing 5500 mg/L of effective chlorine disinfectant and disinfect for more than 30 min. Peracetic acid (2 g/m3) or other disinfectants (3% H2O2, 100 mg/L chlorine dioxide, etc.) can be used to fumigate the laboratory overnight or disinfectant aerosol can be sprayed for 1–2 h.

In addition, interim guidelines from the World Health Organization on laboratory biosafety guidance related to coronavirus disease were updated on March 19th, 2020.

Click here for a full list of WHO suggested decontaminants and here for a full list of EPA suggested decontaminants.

Efficacy of Masking: The efficacy and necessity of surgical grade or N95 masks in the clinical laboratory and the general public has not been well defined. In a recent paper in Nature Medicine by Leung and colleagues, surgical face masks were shown to significantly reduce the detection of influenza virus RNA in respiratory droplets and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in respiratory droplets. In light of increasing evidence towards the efficacy of masking, the WHO has reversed its initial recommendation and now supports government initiatives that require or encourage the public wearing of masks, marking a major shift. The CDC has also encouraged general masking, highlighting the importance of masking for all healthcare workers whether patient-facing or not.

COVID-19 Detection in Different Clinical Specimens: An important consideration in biosafety is the detectability of COVID-19 in clinical specimens. A recent JAMA article investigated biodistribution among different clinical specimens of inpatients with COVID-19. Study findings are summarized below:

COVID-19 Detection in Domestic Animals: A recent publication in Science investigated the susceptibility of domestic animals, including dogs, cats, chickens, pigs, and ducks. Their findings demonstrated that cats are susceptible to airborne infection while COVID-19 replicates poorly in dogs, pigs, chickens, and dogs. Healthcare workers should keep this in mind when interacting with domestic pets.

 

Additional biosafety resources/publications from other associations include:

NSW Clinical Excellence Commission: Application of PPE in Response to COVID-19 Pandemic

Key Publications on Biosafety: 

  1. Lippi G, Adeli K, Ferrari M, Horvath AR, Koch D, Sethi S, Wang CB. Biosafety measures for preventing infection from COVID-19 in clinical laboratories: IFCC Taskforce Recommendations. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 May 12;1(ahead-of-print). PMID: 32396137
  2. Chang D, Xu H, Rebaza A, Sharma L, Cruz CS. Protecting health-care workers from subclinical coronavirus infection. The Lancet Respiratory Medicine. 2020 Mar 1;8(3):e13. PMID: 32061333
  3. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible?. The Lancet Gastroenterology & Hepatology. 2020 Apr 1;5(4):335-7. PMID: 32087098
  4. Chin A, Chu J, Perera M, Hui K, Yen HL, Chan M, Peiris M, Poon L. Stability of SARS-CoV-2 in different environmental conditions. 2020 Jan 1.
  5. Klompas M, Morris CA, Sinclair J, Pearson M, Shenoy ES. Universal Masking in Hospitals in the Covid-19 Era. New England Journal of Medicine. 2020 Apr 1. PMID: 32237672
  6. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine. 2020 Mar 17. PMID: 32182409
  7. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New England Journal of Medicine. 2020 Mar 19;382(12):1177-9. PMID: 32074444
  8. Leung NH, Chu DK, Shiu EY, Chan KH, McDevitt JJ, Hau BJ, Yen HL, Li Y, Ip DK, Peiris JM, Seto WH. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine. 2020 Apr 3:1-5.
  9. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 Apr 1:1-0. PMID: 32235945
  10. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. Jama. 2020 Mar 11. PMID: 32159775
  11. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 2020 Apr 8. PMID: 32269068
  12. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, Xie G, Lin S, Wang R, Yang X, Chen W. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. bmj. 2020 Apr 21;369. PMID: 32317267
  13. Sunjaya AP, Jenkins C. Rationale for universal face masks in public against COVID-19. Respirology.2020 Apr 30;10.1111. PMID: 32353901
  14. Somsen GA, van Rijn C, Kooij S, Bem RA, Bonn D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir Med. 2020 May 27:S2213-2600(20)30245-9. doi: 10.1016/S2213-2600(20)30245-9. Epub ahead of print. PMID: 32473123.
  15. Bain W, Lee JS, Watson AM, Stitt-Fischer MS. Practical Guidelines for Collection, Manipulation and Inactivation of SARS-CoV-2 and COVID-19 Clinical Specimens. Curr Protoc Cytom. 2020 Jun;93(1):e77. doi: 10.1002/cpcy.77. PMID: 32502333.
  16. IGI Testing Consortium. Blueprint for a pop-up SARS-CoV-2 testing lab. Nat Biotechnol. 2020 Jun 18. doi: 10.1038/s41587-020-0583-3. Epub ahead of print. PMID: 32555529.

_____________________________________________________________________ 

 

5. Biochemical Monitoring of COVID-19 Patients:

The essential role of clinical laboratories in this pandemic extends beyond etiological diagnosis of COVID-19. Biochemical monitoring of COVID-19 patients through in vitro diagnostic testing is critical for assessing disease severity and progression as well as monitoring therapeutic intervention. Several common in vitro diagnostic tests have been implicated in unfavorable COVID-19 progression, potentially providing important prognostic information. A recommended test list based on current literature is included below along with the major laboratory abnormalities associated with adult COVID-19 patients and their potential clinical indication. In addition to more common laboratory tests, new evidence suggests that patients with severe COVID-19 could be at risk for cytokine storm syndrome. Cytokine tests, particularly IL-6, should be used where possible to assess severe patients suspected of hyperinflammation.

Special considerations for pediatrics: Importantly, unlike adults, the laboratory profile in severe COVID-19 pediatric patients is not clear and does not appear to be consistent with SARS. A recent publication recommends clinicians monitor lymphocyte count, c-reactive protein, and procalcitonin to assess severe infection. IL-6 should also be investigated as a potential pediatric prognostic indicator (2). A preliminary description of pediatric U.S. COVID-19 cases was published by the CDC on April 10th, 2020. In line with data from China, the CDC reports that pediatric COVID-19 cases might be less severe when compared to adults and that children may experience different symptoms. Specifically, positive pediatric patients were reported to not always be associated with fever or cough as reported signs and symptoms.  Additionally, although most cases reported among children to date have not been severe, the CDC recommends clinicians maintain a high index of suspicion for COVID-19 infection in children and monitor for progression of illness, particularly among infants and children with underlying conditions. Importantly, interpretation of pediatric laboratory tests based on known adult trends is not recommended due to lack of pediatric information and characteristics. Recent data also suggests a new phenomenon affecting previously asymptomatic children with SARS-CoV-2 infection manifesting as a hyperinflammatory syndrome with multiorgan involvement similar to Kawasaki disease shock syndrome. Further research into the pediatric manifestations of COVID-19 is essential.

Special considerations for pregnant women during COVID-19 pandemic: Researchers have reported potential vertical transmission of COVID-19 in China (19, 20). Thus, minimizing the risk transmission and viral exposure to pregnant women is incredibly important. Many labs have implemented modifications for the required Gestational Diabetes Mellitus screening, including:

Key Publications on Biochemical Monitoring: 

General

  1. Henry BM, de Oliveira MH, Benoit S, Plebani M, Lippi G.Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 10;1(ahead-of-print). PMID:32286245
  2. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Mar 3. PMID:32119647
  3. Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Mar 19. PMID:32191623
  4. Gao Y, Li T, Han M, Li X, Wu D, Xu Y, Zhu Y, Liu Y, Wang X, Wang L. Diagnostic Utility of Clinical Laboratory Data Determinations for Patients with the Severe COVID‐ Journal of Medical Virology. 2020 Mar 17. PMID: 32181911
  5. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Medicine and Infectious Disease. 2020 Mar 13:101623. PMID: 32179124
  6. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020 Mar 3:1-3. PMID:32125452
  7. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 Mar 11. PMID:32171076
  8. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine. 2020 Feb 28. PMID: 32109013
  9. Kavsak PA, de Wit K, Worster A. Clinical chemistry tests for patients with COVID-19–important caveats for interpretation. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 16;1(ahead-of-print). PMID: 32301748
  10. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, Zhang Z. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 2020 Mar;63(3):364-74. PMID:32048163
  11. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB.Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 Apr 13.PMID:32282022
  12. Ferrari D, Motta A, Strollo M, Banfi G, Locatelli M. Routine blood tests as a potential diagnostic tool for COVID-19. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 16;1(ahead-of-print). PMID: 32301746
  13. Lippi G, South AM, Henry BM. ANNALS EXPRESS: Electrolyte Imbalances in Patients with Severe Coronavirus Disease 2019 (COVID-19. Ann Clin Biochem. 2020 Apr 8 (ahead-of-print). PMID: 32266828
  14. Nichols JH, Rauch CA. A Laboratory Risk Assessment during the Coronavirus (COVID-19) Pandemic. The Journal of Applied Laboratory Medicine. 2020 Apr 16. PMCID: PMC7184397
  15. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020 Apr 22. PMID: 32320003
  16. Kavsak PA, de Wit K, Worster A. Emerging key laboratory tests for patients with COVID-19. Clinical Biochemistry. 2020 Apr 30. PMID: 32360478
  17. Lu G, Wang J. Dynamic changes in routine blood parameters of a severe COVID-19 case. Clinica Chimica Acta. 2020 May 13. PMID: 32405079
  18. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W, Li H, Zhang P, Song X, Chen X, Xiang M, Zhang C, Bai L, Xiang D, Chen MM, Liu Y, Yan Y, Liu M, Mao W, Zou J, Liu L, Chen G, Luo P, Xiao B, Zhang C, Zhang Z, Lu Z, Wang J, Lu H, Xia X, Wang D, Liao X, Peng G, Ye P, Yang J, Yuan Y, Huang X, Guo J, Zhang BH, Li H. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020 Jun 2;31(6):1068-1077.e3. doi: 10.1016/j.cmet.2020.04.021. Epub 2020 May 1. PMID: 32369736
  19. Wang M, Zhang J, Ye D, et al. Time-dependent changes in the clinical characteristics and prognosis of hospitalized COVID-19 patients in Wuhan, China: A retrospective study [published online ahead of print, 2020 Jul 6]. Clin Chim Acta. 2020;510:220-227. doi:10.1016/j.cca.2020.06.051
  20. Yang HS, Hou Y, Vasovic LV, et al. Routine laboratory blood tests predict SARS-CoV-2 infection using machine learning [published online ahead of print, 2020 Aug 21].Clin Chem. 2020;hvaa200. doi:10.1093/clinchem/hvaa200
  21. Panteghini M. Lactate dehydrogenase: an old enzyme reborn as a COVID-19 marker (and not only) [published online ahead of print, 2020 Aug 24].Clin Chem Lab Med. 2020;/j/cclm.ahead-of-print/cclm-2020-1062/cclm-2020-1062.xml. doi:10.1515/cclm-2020-1062

Inflammatory Markers:

  1. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clinica chimica acta; international journal of clinical chemistry. 2020 Mar 4. PMID:32145275
  2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020 Mar 16. PMID:32192578
  3. Monteleone G, Sarzi-Puttini PC, Ardizzone S. Preventing COVID-19-induced pneumonia with anticytokine therapy. The Lancet Rheumatology. 2020 Apr 6. PMID: TBD
  4. McGonagle D, Sharif K, O'Regan A, Bridgewood C. Interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmunity Reviews. 2020 Apr 3:102537. PMID: 32251717
  5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y.Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020 Mar 17;323(11):1061-9. PMID: 32031570
  6. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clinical Infectious Diseases. 2020 Apr 17. PMID: 32301997
  7. Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, Xu B, Dai Y, Li X, Zhang C, Peng Y. Longitudinal Profiling of Cytokines and Chemokines in COVID-19 Reveals Inhibitory Mediators IL-1Ra and IL-10 Are Associated with Disease Severity While Elevated RANTES Is an Early Predictor of Mild Disease. Non-peer reviewed preprint.
  8. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li B, Song X, Zhou X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of Clinical Virology. 2020 Apr 14:104370. PMID: 32344321
  9. Aziz M, Fatima R, Assaly R. Elevated Interleukin‐6 and Severe COVID‐19: A Meta‐ Journal of Medical Virology. 2020 Apr 28. PMID: 32343429
  10. Lapić I, Rogić D, Plebani M. Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): a pooled analysis. Clinical chemistry and laboratory medicine. 2020 May 9. PMID: 32386190
  11. Del Valle et al. An inflammatory cytokine signature helps predict COVID-19 severity and death. https://doi.org/10.1101/2020.05.28.20115758
  12. Ognibene A, Lorubbio M, Magliocca P, Tripodo E, Vaggelli G, Iannelli G, Feri M, Scala R, Tartaglia AP, Galano A, Pancrazzi A. ELEVATED MONOCYTE DISTRIBUTION WIDTH IN COVID-19 PATIENTS: THE CONTRIBUTION OF THE NOVEL SEPSIS INDICATOR. Clinica Chimica Acta. 2020 Jun 3. PMID: 32504637
  13. Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, Liu J, Guo X, Huang C, Jiao Y, Zhu F, Zhu B, Cui L. Serum Cytokine and Chemokine profile in Relation to the Severity of Coronavirus disease 2019 (COVID-19) in China. J Infect Dis. 2020 Jun 21:jiaa363. doi: 10.1093/infdis/jiaa363. Epub ahead of print. PMID: 32563194.
  14. Spectrum of innate and adaptive immune response to SARS CoV 2 infection across asymptomatic, mild and severe cases; a longitudinal cohort study. https://doi.org/10.1101/2020.06.22.20137141
  15. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, Hu JL, Xu W, Zhang Y, Lv FJ, Su K. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine. 2020 Jun 18:1-5. https://doi.org/10.1038/s41591-020-0965-6
  16. Pfaar O, Torres MJ, Akdis CA. COVID-19: A series of important recent clinical and laboratory reports in immunology and pathogenesis of SARS-CoV-2 infection and care of allergy patients [published online ahead of print, 2020 Jun 26]. Allergy. 2020;10.1111/all.14472. doi:10.1111/all.14472
  17. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19 [published online ahead of print, 2020 Jul 10]. Nat Med. 2020;10.1038/s41591-020-0968-3. doi:10.1038/s41591-020-0968-3
  18. Rocio LG, Alberto UR, Paloma T, et al. Interleukin-6-based mortality risk model for hospitalised COVID-19 patients [published online ahead of print, 2020 Jul 22]. J Allergy Clin Immunol. 2020;S0091-6749(20)31027-7. doi:10.1016/j.jaci.2020.07.009
  19. Zhang D, Zhou X, Yan S, et al. Correlation between cytokines and coagulation-related parameters in patients with coronavirus disease 2019 admitted to ICU [published online ahead of print, 2020 Jul 6]. Clin Chim Acta. 2020;510:47-53. doi:10.1016/j.cca.2020.07.002
  20. Hu D, Li L, Shi W, Zhang L. Less expression of CD4+and CD8+ T cells might reflect the severity of infection and predict worse prognosis in patients with COVID-19: Evidence from a pooled analysis [published online ahead of print, 2020 Jun 27]. Clin Chim Acta. 2020;510:1-4. doi:10.1016/j.cca.2020.06.040
  21. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival [published online ahead of print, 2020 Aug 24].Nat Med. 2020;10.1038/s41591-020-1051-9. doi:10.1038/s41591-020-1051-9
  22. Buszko M, Park JH, Verthelyi D, Sen R, Young HA, Rosenberg AS. The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge [published online ahead of print, 2020 Aug 27].Nat Immunol. 2020;10.1038/s41590-020-0779-1. doi:1038/s41590-020-0779-1
  23. Zeng Z, Yu H, Chen H, et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China.Crit Care. 2020;24(1):525. Published 2020 Aug 27. doi:1186/s13054-020-03255-0

Cardiac Markers:

  1. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Progress in cardiovascular diseases. 2020 Mar 10. PMID:32169400
  2. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology. 2020 Mar 27. PMID: 32219356
  3. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020 Mar 5:1-2. PMID:32139904
  4. American College of Cardiology. Troponin and BNP Use in COVID-19. 28 Mar 2020.
  5. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA cardiology. 2020 Mar 25. PMID: 32211816
  6. Chapman AR, Bularga A, Mills NL. High-Sensitivity Cardiac Troponin Can Be An Ally in the Fight Against COVID-19. Circulation. 2020 Apr 6. PMID: 32251612
  7. Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, Cao S, Liu X, Xiang Y, Zhao Q, Huang H. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European Heart Journal. 2020 May 11. PMID: 32391877
  8. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood, The Journal of the American Society of Hematology. 2020 Jun 4;135(23):2033-40. PMID: 32339221
  9. Harmouch F, Shah K, Hippen J, Kumar A, Goel H. Is it all in the heart? Myocardial injury as major predictor of mortality among hospitalized COVID-19 patients [published online ahead of print, 2020 Jul 25]. J Med Virol. 2020;10.1002/jmv.26347. doi:10.1002/jmv.26347
  10. Deng P, Ke Z, Ying B, Qiao B, Yuan L. The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19 [published online ahead of print, 2020 Jul 16]. Clin Chim Acta. 2020;510:186-190. doi:10.1016/j.cca.2020.07.018
  11. Qin JJ, Cheng X, Zhou F, et al. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19 [published online ahead of print, 2020 Jul 14]. Hypertension. 2020;10.1161/HYPERTENSIONAHA.120.15528. doi:10.1161/HYPERTENSIONAHA.120.15528
  12. Hafiane A. SARS-CoV-2 and the cardiovascular system [published online ahead of print, 2020 Jul 16]. Clin Chim Acta. 2020;510:311-316. doi:10.1016/j.cca.2020.07.019
  13. Deng P, Ke Z, Ying B, Qiao B, Yuan L. The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19 [published online ahead of print, 2020 Jul 16]. Clin Chim Acta. 2020;510:186-190. doi:10.1016/j.cca.2020.07.018
  14. Sawalha K, Abozenah M, Kadado AJ, et al. Systematic review of COVID-19 related myocarditis: Insights on management and outcome [published online ahead of print, 2020 Aug 18].Cardiovasc Revasc Med. 2020;S1553-8389(20)30497-8. doi:10.1016/j.carrev.2020.08.028
  15. Lombardi CM, Carubelli V, Iorio A, et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study [published online ahead of print, 2020 Aug 26].JAMA Cardiol. 2020;10.1001/jamacardio.2020.3538. doi:10.1001/jamacardio.2020.3538
  16. Liu D, Yang Q, Chen W, et al. Troponin I, a risk factor indicating more severe pneumonia among patients with novel coronavirus infected pneumonia.Clin Infect Pract. 2020;7:100037. doi:10.1016/j.clinpr.2020.100037
  17. Raad M, Dabbagh M, Gorgis S, et al. Cardiac Injury Patterns and Inpatient Outcomes Among Patients Admitted With COVID-19 [published online ahead of print, 2020 Jul 24].Am J Cardiol. 2020;S0002-9149(20)30774-8. doi:10.1016/j.amjcard.2020.07.040
  18. Stefanini GG, Chiarito M, Ferrante G, et al. Early detection of elevated cardiac biomarkers to optimise risk stratification in patients with COVID-19 [published online ahead of print, 2020 Aug 14].Heart. 2020;heartjnl-2020-317322. doi:10.1136/heartjnl-2020-317322
  19. Shah P, Doshi R, Chenna A, et al. Prognostic Value of Elevated Cardiac Troponin I in Hospitalized Covid-19 Patients [published online ahead of print, 2020 Aug 27]. Am J Cardiol. 2020;S0002-9149(20)30898-5. doi:10.1016/j.amjcard.2020.08.041
  20. Aladağ N, Atabey RD. The role of concomitant cardiovascular diseases and cardiac biomarkers for predicting mortality in critical COVID-19 patients [published online ahead of print, 2020 Sep 4]. Acta Cardiol. 2020;1-8. doi:10.1080/00015385.2020.1810914

Hematology Markers:

  1. Fan BE, Chong VC, Chan SS, Lim GH, Lim KG, Tan GB, Mucheli SS, Kuperan P, Ong KH. Hematologic parameters in patients with COVID-19 infection. American journal of hematology. 2020 Mar 4. PMID:32129508
  2. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clinica Chimica Acta. 2020 Mar 13. PMID:32178975
  3. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020 Jan 1. PMID:32073213
  4. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, Liu XH, Zhu CL. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Mar 16;1(ahead-of-print). PMID: 32172226
  5. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H, Wang C. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. New England Journal of Medicine. 2020 Apr 8. PMID: 32268022
  6. Salamanna F, Maglio M, Landini MP, Fini M. Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets. 2020 May 12:1-6. PMID: 32397915
  7. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. The Lancet Haematology. 2020 May 11. PMID: 32407672
  8. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JC, Fogerty AE, Waheed A, Goodarzi K, Bendapudi P, Bornikova L, Gupta S, Leaf D, Kuter DJ, Rosovsky RP. COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV2 Infection. Blood. 2020 Jun 3:blood.2020006520. doi: 10.1182/blood.2020006520. Epub ahead of print. PMID: 32492712.
  9. Dewaele K, Claeys R. Hemophagocytic lymphohistiocytosis in SARS-CoV-2 infection. Blood. 2020 Jun 18;135(25):2323. doi: 10.1182/blood.2020006505. PMID: 32556137.
  10. Mezalek ZT, Khibri H, Ammouri W, et al. COVID-19 Associated Coagulopathy and Thrombotic Complications. Clin Appl Thromb Hemost. 2020;26:1076029620948137. doi:10.1177/1076029620948137
  11. Hardy M, Douxfils J, Bareille M, et al. Studies on hemostasis in COVID-19 deserve careful reporting of the laboratory methods, their significance and their limitations [published online ahead of print, 2020 Aug 13]. J Thromb Haemost. 2020;10.1111/jth.15061. doi:10.1111/jth.15061
  12. Nicolai L, Leunig A, Brambs S, et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia is Associated with Respiratory Failure and Coagulopathy [published online ahead of print, 2020 Jul 28]. Circulation. 2020;10.1161/CIRCULATIONAHA.120.048488. doi:10.1161/CIRCULATIONAHA.120.048488
  13. Elshazli RM, Toraih EA, Elgaml A, et al. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients.PLoS One. 2020;15(8):e0238160. Published 2020 Aug 21. doi:10.1371/journal.pone.0238160
  14. Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. Published 2020 Sep 4. doi:10.1186/s13045-020-00954-7
  15. Christensen B, Favaloro EJ, Lippi G, Van Cott EM. Hematology Laboratory Abnormalities in Patients with Coronavirus Disease 2019 (COVID-19) [published online ahead of print, 2020 Sep 2]. Semin Thromb Hemost. 2020;10.1055/s-0040-1715458. doi:10.1055/s-0040-1715458

Hepatic & Renal Markers:

  1. Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. The Lancet Gastroenterology & Hepatology. 2020 Mar 20. PMID: 32203680
  2. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney international. 2020 Mar 20. PMID: 32247631
  3. Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, Zhang Y, Huang S, Liu Z, Cheng J. Clinical features of COVID-19-related liver damage. Clinical Gastroenterology and Hepatology. 2020 Apr 10. PMID: 32283325
  4. Lax SF, Skok K, Zechner P, Kessler HH, Kaufmann N, Koelblinger C, Vander K, Bargfrieder U, Trauner M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Annals of Internal Medicine. 2020 May. PMID: 32422076
  5. Agarwal A, Chen A, Ravindran N, To C, Thuluvath PJ. Gastrointestinal and liver manifestations of COVID-19. Journal of Clinical and Experimental Hepatology. 2020 Apr 1. PMCID: PMC7212283
  6. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, Yi F, Yang HC, Fogo AB, Nie X, Zhang C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney international. 2020 Apr 9. PMID: 32327202
  7. Portincasa P, Krawczyk M, Smyk W, Lammert F, Di Ciaula A. COVID-19 and nonalcoholic fatty liver disease: two intersecting pandemics [published online ahead of print, 2020 Jun 26]. Eur J Clin Invest. 2020;e13338. doi:10.1111/eci.13338
  8. Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019 [published online ahead of print, 2020 Jun 25]. Aging (Albany NY). 2020;12:10.18632/aging.103526. doi:10.18632/aging.103526
  9. Bertolini A, van de Peppel IP, Bodewes FAJA, et al. Abnormal liver function tests in COVID-19 patients: relevance and potential pathogenesis [published online ahead of print, 2020 Jul 23]. Hepatology. 2020;10.1002/hep.31480. doi:10.1002/hep.31480
  10. Zarifian A, Bidary MZ, Arekhi S, et al. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID-19: a systematic review and meta-analysis [published online ahead of print, 2020 Jul 18]. J Med Virol. 2020;10.1002/jmv.26314. doi:10.1002/jmv.26314
  11. Saad Alharbi K, Al-Abbasi FA, Prasad Agrawal G, Sharma A, Kowti R, Kazmi I. Impact of COVID-19 on Nephrology Patients: A Mechanistic Outlook for Pathogenesis of Acute Kidney Injury [published online ahead of print, 2020 Jul 15]. Altern Ther Health Med. 2020;AT6544.
  12. Boregowda U, Aloysius MM, Perisetti A, Gajendran M, Bansal P, Goyal H. Serum Activity of Liver Enzymes Is Associated With Higher Mortality in COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2020;7:431. Published 2020 Jul 22. doi:10.3389/fmed.2020.00431
  13. Scarpellini E, Fagoonee S, Rinninella E, et al. Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J Clin Med. 2020;9(8):E2488. Published 2020 Aug 3. doi:10.3390/jcm9082488
  14. Ramachandran P, Perisetti A, Gajendran M, Chakraborti A, Narh JT, Goyal H. Increased Serum Aminotransferase Activity and Clinical Outcomes in Coronavirus Disease 2019 [published online ahead of print, 2020 Jun 30].J Clin Exp Hepatol. 2020;10.1016/j.jceh.2020.06.009. doi:10.1016/j.jceh.2020.06.009
  15. El Ouali S, Romero-Marrero C, Regueiro M. Hepatic manifestations of COVID-19 [published online ahead of print, 2020 Aug 27].Cleve Clin J Med. 2020;10.3949/ccjm.87a.ccc061. doi:10.3949/ccjm.87a.ccc061
  16. Ghoshal UC, Ghoshal U, Dhiman RK. Gastrointestinal and Hepatic Involvement in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Review [published online ahead of print, 2020 Jun 11].J Clin Exp Hepatol. 2020;10.1016/j.jceh.2020.06.002. doi:10.1016/j.jceh.2020.06.002
  17. Gao Y, Li Q, Shi H, et al. Preliminary Exploration of the Cause of Liver Disorders During Early Stages in COVID-19 Patients. Front Med (Lausanne). 2020;7:501. Published 2020 Aug 7. doi:10.3389/fmed.2020.00501
  18. Bernal-Monterde V, Casas-Deza D, Letona-Giménez L, et al. SARS-CoV-2 Infection Induces a Dual Response in Liver Function Tests: Association with Mortality during Hospitalization. Biomedicines. 2020;8(9):E328. Published 2020 Sep 4. doi:10.3390/biomedicines8090328
  19. Kovalic AJ, Huang G, Thuluvath PJ, Satapathy SK. Reply to Letter to the Editor: Elevated Liver Biochemistries in Hospitalized Chinese Patients With Severe COVID-19: Systematic Review and Meta-Analysis [published online ahead of print, 2020 Sep 7]. Hepatology. 2020;10.1002/hep.31542. doi:10.1002/hep.31542
  20. Tsibouris P, Ekmektzoglou K, Agorogianni A, et al. Gastrointestinal involvement in COVID-19 patients: a retrospective study from a Greek COVID-19 referral hospital. Ann Gastroenterol. 2020;33(5):465-472. doi:10.20524/aog.2020.0514
  21. Zhou YH, Zheng KI, Targher G, Byrne CD, Zheng MH. Abnormal liver enzymes in children and infants with COVID-19: A narrative review of case-series studies [published online ahead of print, 2020 Sep 1]. Pediatr Obes. 2020;e12723. doi:10.1111/ijpo.12723
  22. Mahamid M, Nseir W, Khoury T, et al. Nonalcoholic fatty liver disease is associated with COVID-19 severity independently of metabolic syndrome: a retrospective case-control study [published online ahead of print, 2020 Aug 28]. Eur J Gastroenterol Hepatol. 2020;10.1097/MEG.0000000000001902. doi:10.1097/MEG.0000000000001902

Pediatrics:

  1. Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Mar 16. PMID: 32172227
  2. Cao J, Devaraj S. COVID-19 in Pediatrics: A Laboratory Perspective. The Journal of Applied Laboratory Medicine. 2020 Apr 15.
  3. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID‐19 infection: Different points from adults. Pediatric pulmonology. 2020 Mar 5. PMID:32134205
  4. Pedersen SF, Ho YC. SARS-CoV-2: A Storm is Raging. The Journal of Clinical Investigation. 2020 Mar 27. PMID: 32217834
  5. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, Yang J. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. Jama. 2020 Mar 26. PMID:32215581
  6. Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, Long X. Antibodies in infants born to mothers with COVID-19 pneumonia. Jama. 2020 Mar 26. PMID: 32215589
  7. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020 Mar 7;395(10226):809-15PMID: 32151335
  8. Jiang S, Liu P, Xiong G, Yang Z, Wang M, Li Y, Yu XJ. Coinfection of SARS-CoV-2 and multiple respiratory pathogens in children. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 Apr 16;1(ahead-of-print). PMID: 32301747
  9. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, Zhang W, Wang Y, Bao S, Li Y, Wu C. SARS-CoV-2 infection in children. New England Journal of Medicine. 2020 Mar 18. PMID: 32187458
  10. Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. Clinical characteristics of 19 neonates born to mothers with COVID-19. Frontiers of Medicine. 2020 Apr 13:1-6. PMID: 32285380
  11. Nathan N, Prevost B, Corvol H. Atypical presentation of COVID-19 in young infants. The Lancet. 2020 Apr 27. PMID: 32353326
  12. Zhang Y, Xu J, Jia R, et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients]. Cell Mol Immunol. 2020 May 7. PMID: 32382126
  13. Zimmermann P, Curtis N. COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features. The Pediatric Infectious Disease Journal. 2020 Jun 1;39(6):469-77. PMID: 32398569
  14. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. The Lancet. 2020 May 7. PMID: 32386565
  15. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, Nguyen EL, Barsh GR, Maskatia S, Mathew R. COVID-19 and Kawasaki disease: novel virus and novel case. Hospital Pediatrics. 2020 May 1:hpeds-2020. PMID: 32265235
  16. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. The Lancet. 2020 May 7. PMID: 32386565
  17. DeBiasi RL, Song X, Delaney M, Bell M, Smith K, Pershad J, Ansusinha E, Hahn A, Hamdy R, Harik N, Hanisch B. Severe COVID-19 in children and young adults in the Washington, DC metropolitan region. The Journal of Pediatrics. 2020 May 13. PMID: 32405091
  18. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, Heidemann SM, Kleinman LC, Sen AI, Hall MW, Priestley MA. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA pediatrics. 2020 May 11. PMID: 32392288
  19. https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19
  20. Henry BM, Benoit SW, de Oliveira MH, Hsieh WC, Benoit J, Ballout RA, Plebani M, Lippi G. Laboratory Abnormalities in Children with Mild and Severe Coronavirus Disease 2019 (COVID-19): a pooled analysis and review. Clinical Biochemistry. 2020 May 27. PMID: 32473151
  21. Batu ED, Özen S. Implications of COVID-19 in pediatric rheumatology [published online ahead of print, 2020 Jun 4]. Rheumatol Int. 2020;10.1007/s00296-020-04612-6. doi:10.1007/s00296-020-04612-6. PMID: 32500409
  22. Colonna C, Spinelli F, Monzani NA, Ceriotti F, Gelmetti C. Chilblains in children in the time of Covid-19: new evidence with serology assay [published online ahead of print, 2020 Jun 13]. Pediatr Dermatol. 2020;1111/pde.14269. doi:10.1111/pde.14269
  23. Götzinger, Florian & Santiago García, Begoña & Noguera, Antoni & Lanaspa, Miguel & Carducci, Francesca & Gabrovska, Natalia & Velizarova, Svetlana & Prunk, Petra & Osterman, Veronika & Krivec, Uros & Vecchio, Andrea & Shingadia, Delane & Soriano-Arandes, Antoni & Melendo, Susana & Lanari, Marcello & Pierantoni, Luca & Wagner, Noémie & L'Huillier, Arnaud. (2020). COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. The Lancet Child & Adolescent Health. 10.1016/S2352-4642(20)30177-2.
  24. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents [published online ahead of print, 2020 Jun 29]. N Engl J Med. 2020;NEJMoa2021680. doi:10.1056/NEJMoa2021680
  25. Kache S, Chisti MJ, Gumbo F, et al. COVID-19 PICU guidelines: for high- and limited-resource settings [published online ahead of print, 2020 Jul 7]. Pediatr Res. 2020;10.1038/s41390-020-1053-9. doi:10.1038/s41390-020-1053-9
  26. Moraleda C, Serna-Pascual M, Soriano-Arandes A, et al. Multi-Inflammatory Syndrome in Children related to SARS-CoV-2 in Spain [published online ahead of print, 2020 Jul 25]. Clin Infect Dis. 2020;ciaa1042. doi:10.1093/cid/ciaa1042
  27. Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology Clinical Guidance for Pediatric Patients with Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 and Hyperinflammation in COVID-19. Version 1 [published online ahead of print, 2020 Jul 23]. Arthritis Rheumatol. 2020;10.1002/art.41454. doi:10.1002/art.41454
  28. Lee PY, Day-Lewis M, Henderson LA, et al. Distinct clinical and immunological features of SARS-COV-2-induced multisystem inflammatory syndrome in children [published online ahead of print, 2020 Jul 23]. J Clin Invest. 2020;141113. doi:10.1172/JCI141113
  29. Heald-Sargent T, Muller WJ, Zheng X, Rippe J, Patel AB, Kociolek LK. Age-related differences in nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate coronavirus disease 2019 (COVID-19). JAMA pediatrics. 2020. PMID: 32745201
  30. COVID-19–Associated Multisystem Inflammatory Syndrome in Children — United States, March–July 2020. https://www.cdc.gov/mmwr/volumes/69/wr/mm6932e2.htm?s_cid=mm6932e2_w
  31. Bar-Or D, Rael LT, Brody EN. Insights into pediatric multi-system inflammatory syndrome and COVID-19 [published online ahead of print, 2020 Jul 14]. Clin Chim Acta. 2020;510:121-122. doi:10.1016/j.cca.2020.07.025
  32. Lara D, Young T, Del Toro K, et al. Acute Fulminant Myocarditis in a Pediatric Patient With COVID-19 Infection. Pediatrics. 2020;146(2):e20201509. doi:10.1542/peds.2020-1509
  33. Pérez-Martinez A, Guerra-García P, Melgosa M, et al. Clinical outcome of SARS-CoV-2 infection in immunosuppressed children in Spain [published online ahead of print, 2020 Aug 29].Eur J Pediatr. 2020;10.1007/s00431-020-03793-3. doi:10.1007/s00431-020-03793-3
  34. Peck JL. COVID-19: Impacts and Implications for Pediatric Practice [published online ahead of print, 2020 Jul 9].J Pediatr Health Care. 2020;S0891-5245(20)30177-2. doi:10.1016/j.pedhc.2020.07.004
  35. Ciprandi G, Licari A, Filippelli G, Tosca MA, Marseglia GL. Children and adolescents with allergy and/or asthma seem to be protected from coronavirus disease 2019.Ann Allergy Asthma Immunol. 2020;125(3):361-362. doi:10.1016/j.anai.2020.06.001
  36. Patel AB, Clifford A, Creaden J, et al. SARS-CoV-2 Point Prevalence among Asymptomatic Hospitalized Children and Subsequent Healthcare Worker Evaluation [published online ahead of print, 2020 Aug 28].J Pediatric Infect Dis Soc. 2020;piaa102. doi:10.1093/jpids/piaa102
  37. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea [published online ahead of print, 2020 Aug 28].JAMA Pediatr. 2020;10.1001/jamapediatrics.2020.3988. doi:10.1001/jamapediatrics.2020.3988
  38. Dhir SK, Kumar J, Meena J, Kumar P. Clinical Features and Outcome of SARS-CoV-2 Infection in Neonates: A Systematic Review [published online ahead of print, 2020 Aug 28].J Trop Pediatr. 2020;fmaa059. doi:10.1093/tropej/fmaa059
  39. Mamishi S, Movahedi Z, Mohammadi M, et al. Multisystem Inflammatory Syndrome Associated with SARS-CoV-2 Infection in 45 Children: A First Report from Iran [published online ahead of print, 2020 Aug 28].Epidemiol Infect. 2020;1-16. doi:10.1017/S095026882000196X
  40. Pang J, Boshier FAT, Alders N, Dixon G, Breuer J. SARS-CoV-2 Polymorphisms and Multisystem Inflammatory Syndrome in Children (MIS-C) [published online ahead of print, 2020 Sep 9]. Pediatrics. 2020;e2020019844. doi:10.1542/peds.2020-019844
  41. Tam H, El Tal T, Go E, Yeung RSM. Pediatric inflammatory multisystem syndrome temporally associated with COVID-19: a spectrum of diseases with many names [published online ahead of print, 2020 Sep 9]. CMAJ. 2020;cmaj.201600. doi:10.1503/cmaj.201600
  42. Do LAH, Anderson J, Mulholland EK, Licciardi PV. Can data from paediatric cohorts solve the COVID-19 puzzle?. PLoS Pathog. 2020;16(9):e1008798. Published 2020 Sep 9. doi:10.1371/journal.ppat.1008798
  43. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea [published online ahead of print, 2020 Aug 28]. JAMA Pediatr. 2020;10.1001/jamapediatrics.2020.3988. doi:10.1001/jamapediatrics.2020.3988
  44. Yonker LM, Neilan AM, Bartsch Y, et al. Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses [published online ahead of print, 2020 Aug 18]. J Pediatr. 2020;S0022-3476(20)31023-4. doi:10.1016/j.jpeds.2020.08.037

Maternal:

  1. Poon LC, Yang H, Kapur A, Melamed N, Dao B, Divakar H, McIntyre HD, Kihara AB, Ayres‐de‐Campos D, Ferrazzi EM, Di Renzo GC. Global interim guidance on coronavirus disease 2019 (COVID‐19) during pregnancy and puerperium from FIGO and allied partners: Information for healthcare professionals. International Journal of Gynecology & Obstetrics. 2020 Apr 4. PMID: 32248521
  2. Mullins E, Evans D, Viner RM, O'Brien P, Morris E. Coronavirus in pregnancy and delivery: rapid review. Ultrasound in Obstetrics & Gynecology. 2020 Mar 17. PMID: 32180292
  3. Summary of guidelines related to obstetrics and gynaecology published by the ObG Project.  Coronavirus and Pregnancy: CDC Guidance and Professional Recommendations
  4. Golden TN, Simmons RA. Maternal and Neonatal Response to COVID-19 [published online ahead of print, 2020 Jun 23]. Am J Physiol Endocrinol Metab. 2020;1152/ajpendo.00287.2020. doi:10.1152/ajpendo.00287.2020
  5. Molina LP, Chow SK, Nickel A, Love JE. Prolonged Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA in an Obstetric Patient With Antibody Seroconversion [published online ahead of print, 2020 Jul 21]. Obstet Gynecol. 2020;10.1097/AOG.0000000000004086. doi:10.1097/AOG.0000000000004086
  6. Barbero P, Mugüerza L, Herraiz I, et al. SARS-CoV-2 in pregnancy: characteristics and outcomes of hospitalized and non-hospitalized women due to COVID-19 [published online ahead of print, 2020 Jul 20]. J Matern Fetal Neonatal Med. 2020;1-7. doi:10.1080/14767058.2020.1793320
  7. Ashraf MA, Keshavarz P, Hosseinpour P, et al. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Pregnancy and the Possibility of Vertical Transmission. J Reprod Infertil. 2020;21(3):157-168.
  8. Takemoto MLS, Menezes MO, Andreucci CB, et al. Maternal mortality and COVID-19 [published online ahead of print, 2020 Jul 16]. J Matern Fetal Neonatal Med. 2020;1-7. doi:10.1080/14767058.2020.1786056
  9. Hessami K, Homayoon N, Hashemi A, Vafaei H, Kasraeian M, Asadi N. COVID-19 and maternal, fetal and neonatal mortality: a systematic review [published online ahead of print, 2020 Aug 16]. J Matern Fetal Neonatal Med. 2020;1-6. doi:10.1080/14767058.2020.1806817
  10. Takemoto MLS, Menezes MO, Andreucci CB, et al. Clinical characteristics and risk factors for mortality in obstetric patients with severe COVID-19 in Brazil: a surveillance database analysis [published online ahead of print, 2020 Aug 16]. BJOG. 2020;10.1111/1471-0528.16470. doi:10.1111/1471-0528.16470
  11. Dubey P, Reddy SY, Manuel S, Dwivedi AK. Maternal and neonatal characteristics and outcomes among COVID-19 infected women: An updated systematic review and meta-analysis [published online ahead of print, 2020 Jul 22]. Eur J Obstet Gynecol Reprod Biol. 2020;252:490-501. doi:10.1016/j.ejogrb.2020.07.034
  12. Mongula JE, Frenken MWE, van Lijnschoten G, et al. COVID-19 during pregnancy: non-reassuring fetal heart rate, placental pathology and coagulopathy [published online ahead of print, 2020 Aug 27].Ultrasound Obstet Gynecol. 2020;10.1002/uog.22189. doi:10.1002/uog.22189
  13. Kadir RA, Kobayashi T, Iba T, et al. COVID-19 Coagulopathy in Pregnancy: Critical Review, Preliminary Recommendations and ISTH Registry - Communication from the ISTH SSC for Women's Health [published online ahead of print, 2020 Aug 26].J Thromb Haemost. 2020;10.1111/jth.15072. doi:10.1111/jth.15072
  14. Massarotti C, Adriano M, Cagnacci A, et al. Asymptomatic SARS-CoV-2 infections in pregnant patients in an Italian city during complete lockdown [published online ahead of print, 2020 Aug 25].J Med Virol. 2020;10.1002/jmv.26458. doi:10.1002/jmv.26458
  15. Pirkle CM. Evidence based care for pregnant women with covid-19. BMJ. 2020;370:m3510. Published 2020 Sep 9. doi:10.1136/bmj.m3510
  16. Gao X, Wang S, Zeng W, et al. Clinical and immunological features among COVID-19 affected mother-infant pairs: antibodies to SARS- CoV- 2 detected in breast milk [published online ahead of print, 2020 Sep 1]. New Microbes New Infect. 2020;100752. doi:10.1016/j.nmni.2020.100752
  17. Lai YJ, Chang CM, Lin CK, et al. Severe acute respiratory syndrome coronavirus-2 and the deduction effect of angiotensin-converting enzyme 2 in pregnancy. J Chin Med Assoc. 2020;83(9):812-816. doi:10.1097/JCMA.0000000000000362
  18. Rana DMS, Usman MM, Alam DMM, et al. First trimester miscarriage in a pregnant woman infected with COVID-19 in Pakistan [published online ahead of print, 2020 Sep 4]. J Infect. 2020;S0163-4453(20)30587-9. doi:10.1016/j.jinf.2020.09.002
  19. Li W, Yu N, Kang Q, et al. Clinical manifestations and maternal and perinatal outcomes with COVID-19 [published online ahead of print, 2020 Sep 7]. Am J Reprod Immunol. 2020;e13340. doi:10.1111/aji.13340

 _____________________________________________________________________

6. Other Educational Materials & Webinars

Webinar on COVID-19 – Approach to Laboratory Testing and Biosafety - Cosponsored by the Canadian Society of Clinical Chemists (CSCC) and Roche Canada
ModeratorDr. David Kinniburgh (CA)
Speakers: Prof Giuseppe Lippi (IT); Prof Khosrow Adeli (CA).

TransAsia Webinar on COVID-19 – Challenges in Laboratory Investigations and Clinical Management - Cosponsored by: IFCC EMD and Transasia Erba Mannheim
Speakers: Prof. Nader Rifai (US); Professor Mark Berg (US); Professor Leo Poon (HK).

Free Course on COVID-19 from AACC Learning LabAACC developed this content with leading scientists as part of AACC Learning Lab on NEJM Knowledge+. The free course covers COVID-19 transmission, complications, diagnosis, and more.

Free AACC Laboratory Pearl on COVID-19: The Pearl by Dr. Lippi reveals potential origins for the virus, how it attacks the body, its symptoms, and associated laboratory abnormalities.

Free AACC Clinical Chemistry Podcast - Why Clinical Labs Are Essential to Containing COVID-19: Dr. Matthew Binnicker gives an update on the coronavirus outbreak and discusses what is needed to bring this global epidemic under control.

Free AACC Clinical Chemistry Podcast - Molecular Diagnosis of a Novel Coronavirus: Dr. Leo Poon of the University of Hong Kong gives expert insight into the 2019 novel coronavirus, and discusses the new molecular diagnostic assays his team has developed to detect and quantify this virus.

Roche-Sponsored COVID-19 Online Education Program: Featuring three presentations and the live roundtable discussion, the upcoming edition is set to provide you with important information on the role of each of the tests to control the pandemic (Streaming June 2 2020).

Science Webinar: Coronavirus - A survival guide

Science Webinar: Monitoring the immune system to fight COVID-19: CD4 status, lymphopenia, and infectivity

Siemens Healthineers COVID-19 Testing Guide: A new COVID-19 Laboratory Testing Guide from Siemens Healthineers provides essential information for clinicians to help manage each stage of COVID-19 patient care: diagnosis, prognosis, therapy and follow-up.

CAP Webinar: Navigating Implementation of SARS-CoV-2 Testing in Your Laboratory

_____________________________________________________________________

7. Big Data Tools in COVID-19

Datasets:

  1. COVID-19 Open Research Dataset (CORD-19): A freely available, downloadable and updated weekly collection of publications (many as full text) on COVID-19, SARS-CoV-2, and related coronaviruses
  2. World Health Organization: Global research on coronavirus disease (COVID-19) Registry
  3. LITCOVID: National Institutes of Health and the National Library of Medicine aggregation of COVID-19 general information and news.
  4. Centers for Disease Control and Prevention COVID-19 Research Articles Downloadable Database: The Stephen B. Thacker CDC Library is collecting COVID-19 research articles and compiling them into an easily accessible and downloadable database to help researchers find the latest COVID-19 research
  5. COVIDView: A Weekly Surveillance Summary of U.S. COVID-19 Activity provided by the Centers for Disease Control and Prevention.
  6. Mark Tech Post: COVID-19 resources for machine learning and data science research (lists 29 different datasets)
  7. Larson T, Culbreath K, Chavez D, Larson R, Crossey M, Grenache DG. Modeling SARS-CoV-2 positivity using laboratory data: timing is everything. Clinical Chemistry. 2020 Apr 30. PMID: 32353116

Machine learning tools:

  1. WELL AI: COVID-19 Machine Learning Analytics for Researchers 
  2. SciSightSciSight is a tool for exploring associations between concepts appearing in the COVID-19 Open Research Dataset.

Disclaimer: This collection of resources on this webpage reflects a rapidly changing situation and due to the need for quick answers during the COVID-19 pandemic, we acknowledge that most fast-tracked publications are based on observations, often on a small number of cases, which would be considered as preliminary evidence. The IFCC Task Force has not critically appraised all resources cited here for scientific validity but tried to present information that is believed to help laboratory professionals in formulating their local policies in a more informed manner. The interim advice or conclusions presented here may change as more information is gathered.

 
Website developed by Insoft